

25 - 27 September 2019 – GRK Autumn workshop

Matheus do Carmo Teodoro (Oldenburg, Germany)

Tidal disruption clouds around boson stars

Abstract

In this work we studied the behavior of ideal gas clouds near boson stars (BS). Being the later described by a complex field scalar theory coupled to general relativity, BS can have a wide set of configuration, ranging from very compact objects to extremely extensive ones, with masses that go from atomic scale to the order of supermassive black-holes. For this reason they are also candidates for Black Hole Mimickers and of particular astrophysical interest [1]. On the other hand, these objects possess no hard surface nor event horizon, meaning that matter could pass through them. Tidal disruption events on these spacetimes would have then a peculiar nature, as studied on [2]. In order to approach this topic we have performed, using state-of-the-art numerical techniques accomplished by the Black Hole Accretion Code [3], 2D fully relativistic simulations taking as initial condition spherical clouds at rest with a Gaussian distribution of density in hydrodynamic equilibrium with the atmosphere. The simulations were run for five different spherically symmetric self-interacting BS, having those different compactness. A damped oscillatory behavior of the gas around the center of the BS was found. The results of these simulations will be discussed in this talk.

[1] H. Olivares et al., arXiv:1809.08682
[2] Z. Meliani et al., Class. Quant. Grav. 34, no. 22, 225003 (2017)
[3] O. Porth et al., Comput. Astrophys. Cosmol. 4, 1 (2017), doi:10.1186/s40668-017-0020-2