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Motivation

Perturbations of classical black holes:

have continuous spectrum

have complex poles (QNM)

relaxation back to equilibrium is due to exponential decay
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On the other hand, black holes have finite entropy!

As any (classical or quantum) system of finite entropy they should show Poincaré
recurrences

tPoincare ∼ eSBH

Susskind et al. ’02
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The source of this discrepancy is infinite volume in optical metric

ds2 = g(r)dt2 + g(r)−1dr2 + r2dω2
d = g(r)ds2

opt ,

g(r) = 1− r+/r , 0 ≤ t ≤ βH

Vopt = 4πβH

ˆ
drr4

(r − r+)2
→∞ if r → r+
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A smooth way to regularize this divergence is to replace black hole with a wormhole

gtt → gtt + λ2 , λ2 � 1

ds2
wh = (g(r) + λ2)dt2 + g(r)−1dr2 + r2dω2

d
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New properties:

there is no event horizon

instead there is a throat at r = r+ of size L ∼ r+ ln 1/λ

tthroat ∼ λt∞

two new time scales:
tHeisenberg ∼ ln 1/λ

tPoincare ∼ 1/λ

If λ ∼ e−SBH one has a realization of Susskind’s ideas

Important:

during time scales � tHeisenberg , tPoincare no difference with true black holes

S.S.’04, ’05; T. Damour and S.S.’07
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Applications in astrophysics/ gravitational waves:

Wormholes of this type are considered as exotic compact object (ECOs) that may
produce same gravitational wave signals as black holes

Many papers including Cardoso, Franzin and Pani ’16;

Bueno, Cano, Goelen, Hertog and Vernocke ’17
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So far our wormhole was considered as a phenomenological metric.

We obtain it as a solution to equations of semiclassical gravity.
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Two aspects of black hole horizons

Universality at horizon

ds2 = g(r)dt2 + e2φ(r)g−1(r)dr2 + r2dω2
d

g(r) =
4π

β
(r − r+) + O(r − r+)2 , φ(r) = O(r − r+)

Optical metric

ds2 = g(z)ds2
opt , ds2

opt = dt2 + dz2 + R2(z)dω2
d

g(z) ∼ e−4πz/β + . . . , R2(z) ∼ e4πz/β + . . . z →∞

Optical spacetime is product space Sβ1 ×M3

Near horizon M3 is hyperbolic space H3 of radius β/2π

It is a solution to GR equations to leading order for any β

Sergey Solodukhin The quantum fate of black hole horizons



Horizon as a minimal surface

ds2 = Ω2(ρ)dt2 + dρ2 + r2(ρ)dω2
d

Ω2 = g and ρ is geodesic radial coordinate

Einstein equations:

2rr ′′ + r ′2 − 1 = 0

Ω(r ′2 − 1) + 2rr ′Ω′ = 0

If 2-sphere at ρ = ρ+ has minimal area r ′(ρ+) = 0 then Ω(ρ+) = 0 and this sphere is
a horizon
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Goal of this talk

Study whether same properties are valid in semiclassical gravity (SG)

Claims

static spherically symmetric metric with a horizon of finite (non-vanishing)
temperature is not a solution to SG

in SG a 2-sphere of minimal area embedded in static space-time is not a horizon.
Instead it is a throat of a wormhole

Ω2 at throat is bounded by e−SBH (consistent with Susskind’s ideas)

Possible temperature is different from Hawking temperature and is exponentially
small
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Before we start: general form of 4-metric we shall consider

ds2 = Ω2(z)
(
dt2 + N2(z)dz2 + R2(z)dω2

2

)
, Ω(z) = eσ(z)

Useful choices of coordinates (gauge fixing):

Black hole horizon

N(z) = 1 , σ(z) = −2πz/β + . . . , R(z) ' r+e2πz/β

apriori β and r+ are not related

Minimal sphere

N(z) = 1/Ω(ρ) , z = ρ , R(ρ) = r(ρ)/Ω(ρ)

r(ρ) is geometric radius of sphere
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Semiclassical Gravity (SG)

Consider backreaction from quantized scalar, gauge and fermion fields on
non-quantized geometric background.

Non-perturbative handle is due to the study of conformal anomaly.

Fradkin-Tseytlin ’84, Dowker-Schofield ’90, Mazur-Motola ’01

Two important contributions: due to anomaly and due to optical metric
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Gravitational action

Wgrav = −
1

16πGN

ˆ
R[G ] + Γ[G ]

Γ[G ] is quantum effective action, result of integrating out quantum fields

we represent Gµν = e2σgµν , quantum effective action transforms as

Γ[e2σg ] = −
a

16π2

ˆ
σC2+

b

16π2

ˆ
σE−

2b

16π2

ˆ
(2G̃µν∂µσ∂νσ+2�σ(∇σ)2+(∇σ)4)+Γ0[g ]

G̃µν = Rµν − 1
2
gµνR is Einstein tensor

C2 = Riem2 − 2Ricci2 +
1

3
R2 , E = Riem2 − 4Ricci2 + R2

a =
1

120
(n0 + 6n1/2 + 12n1) , b =

1

360
(n0 + 11n1/2 + 62n1)
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Effective action on optical metric:

Γ0 = Γ[Sβ1 ×M3] = −
π2

90β3
cH

ˆ
M3

1 +
λH

144β

ˆ
M3

RM3

cH = n0 +
7

2
n1/2 + 2n1 , λH = n1/2 + 4n1

- exact result if M3 = H3

- we dropped higher curvature (non-local) terms

- general structure discussed by Gusev and Zelnikov ’98
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Horizons in SG

Variations of Wgrav [σ(z),N(z),R(z)] w.r.t. σ(z), N(z) and R(z) give semiclassical
gravitational equations

Some observations: E(goptical ) = 0 and C2(goptical )→ C2(S1 × H3) = 0 as z →∞

Variation w.r.t. N(z) will produce divergent (as z →∞) terms. These terms will
come from derivatives of σ in b-anomaly and from Γ0, the divergence is due to
divergent volume density on M3

δNWgrav = (360b − 2cH − 10λH)
π2

180β4
r2
+e4πz/β

= −
(
n0 + 6n1/2 − 18n1

) π2

180β4
r2
+e4πz/β .

- Curiously, the equations are satisfied for N = 4 SYM theory (have to look at
subleading terms)

- For generic set of fields divergent term is there so that no static solutions with
horizons in SG!
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Minimal sphere

We look for solutions with a turning point: r ′(ρ) = 0 and Ω′(ρ) = 0 at ρ = ρ+

such that r ′′ > 0 and Ω′′ > 0

Such a solution is parametrized by values of r and Ω at turning point

r is the radius of classical horizon

Values of second derivatives r ′′ and Ω′′ are determined by r and Ω via gravitational
equations

Additionally, there arise consistency conditions on possible values of Ω provided r can
be arbitrary

Variation w.r.t. N(z) takes the form at the turning point

(Ωrr ′′ − r2Ω′′)2 = y2Ω2 , y2 = 1−
r2

κā lnΩ−1
(
γκr2

β4Ω4
−

λκ

β2Ω2
+ 1)

κ = 8πGN , ā = a/12π2, γ = cHπ
2/90, λ = λH/72

Condition that y2 ≥ 0 restricts possible values of Ω!
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For simplicity consider λH = 0 (only scalars)

Then condition y2 ≥ 0 is equivalent to condition

Ω4 ln
Ω0

Ω
≥
γr4

āβ4
, Ω0 = e−

r2

κā

Notice that r2

κā
is proportional to Bekenstein-Hawking entropy SBH = 8π2r2/κ of

classical black hole

It immediately follows that

- Ω < Ω0 = e−
r2

κā

- T 4 = 1/β4 < ā
4γr4 Ω4

0, i.e. temperature is exponentially small!

Conditions r ′′ > 0 and Ω′′ > 0 impose extra constraints on possible values of Ω.

In classical limit ā→ 0 so that Ω0 = 0 and the throat becomes horizon!
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Conclusions

Wormhole modification

Non-perturbative and exact result

Experimentally hard to measure such small deviations

tdistinguish ∼ GM log 1/Ω0 ∼ G2M3

Damour, Solodukhin ’07

Bound on temperature

Experimental signatures for early universe black holes. Lower temperature with
longer life span.
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Outlooks

Include other types of BHs and also non-zero cosmological constants.

Wormhole modifications provide an interesting resolution for information problem.

Understanding small BHs.

Possible implications for primordial black holes and dark matter.
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Thank you for your attention!
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