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Hence:

→ Strings must be tiny and
     directly only affect physics 
     in the deep UV
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Implementing a positive cosmological constant  (“dark 
energy”) in string theory is surprisingly non-trivial!

But:  There are also indirect consequences of string 
theory that may even be relevant for observations at 
cosmological length scales!
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Superstrings:       9 spatial + 1 temporal dimensions

Observation:       3 spatial + 1 temporal dimensions

→ Standard scenario:  “Compactification”

small &
compact

M(10) = M(4) × M(6)

(Size R  )c
Large & non-compact
( = our familiar 4D world)

 At length scales ΔL >> R  the world looks effectively 4Dc
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An important consequence of the extra dimensions:

Moduli fields

= One of the few model independent
   predictions of string theory
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Moduli fields:

Light 4D scalar fields from higher dimensional field 
components: 

E.g. metric fluctuations:

δgMN → δgµν , δgµm , δgmn

4D Metric
4D Vector fields

4D Scalars

Heavy Light Moduli

Integrate out

μ,ν = 0,1,2,3
m,n = 4,...,9

M,N= 0,...,9
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• Moduli vevs parameterize background   
  deformations that cost no/little energy

• Light moduli cause phenomenological problems

(5th force, varying fund. constants, BBN, overclosure,...)

Avoided for  Mmod > (30TeV)2∼
2
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2. de Sitter vacua in string theory 



Our assumption:

TextTextText

Today‘s accelerated expansion of the Universe is 
due to a positive vacuum energy density  

ρvac ∼ (1meV)4 > 0



For ρvac = const. : ρvac ∼ Λ > 0 (cosmological constant)

⇒ Universe asymptotes 4D de Sitter spacetime

a(t) = eκt
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Find a consistent and perturbatively stable 
compactification of string theory of the form

M(10) = M(4)
dS × M(6)

Disadvantages:

• 10D equations hard to solve
•  Perturbative stability hard to check
• Connection to familiar 4D physics less immediate
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Ideally:     V(φ*) = ρ    ≈ (1 meV)

Work in the 4D effective theory with 
many moduli and effective potential V(φ)

⇒ Instead:

φ1

φ2

V(φ)

4
vac

φ*

Main topic of this talk
(surprisingly difficult)

Mmoduli > O(30TeV)
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How does one compute V(φ)?

String theory has two fundamental expansion parameters:

gs (string coupling) ↔    Loop expansion

+ + ...

α� = l2s =(string length)2 ↔    Deviation from
point particle limit

= + ...
ls

∼ g2(L−1)
s
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Lowest order in      and α� = l2sgs

⇔       “Supergravity approximation”

= a classical field theory for the massless string modes 

Classical 10D 
supergravity

Natural first attempt: 
Try to find de Sitter vacua using only this!

⇒    “Classical” de Sitter vacua

Ssugra =
�
d10x

√
g R + . . .
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   E.g.:  Gibbons (1984);  
           de Wit, Smit, Hari Dass (1987)
           Maldacena, Nuñez (2000)
           Steinhardt, Wesley (2008)

If null energy condition (NEC) is satisfied, i.e. if

dS4 ×w M(6) is not a solution of the supergravity
approximation!

Simplest version:

TMN nMnN ≥ 0, n · n = 0



Too steep slope in v 
whenever  V>0

v (volume modulus)

V(v)

Manifestation in 4D field theory:

⇒  No de Sitter vacua possible (and no slow roll inflation)
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A strategy:

(i) “Smear” the O-planes:

O-planes

M(6) M(6)

“Smeared” O-planes

(ii) Use group or coset 
manifolds for M(6)

Back-reaction & dimensional reduction well-understood→

M(6) = G or G/H

Negative internal curvature 



Despite these simplifications, one finds:

Most models can be ruled out by weaker no-go 
theorems along other field directions

Too steep slope in particular direction in (v,Φ)-plane
whenever  V>0

V(σ)

σ

σ /∈ (v,φ)



Related important early works:                                     Silverstein (2007)
Haque, Shiu, Underwood, Van Riet (2008)
Danielsson, Haque, Shiu, Van Riet (2009)

Andriot, Goi, Minasian, Petrini (2010)
Dong, Horn, Silverstein, Torroba (2010)

Danielsson, Koerber, Van Riet  (2010) 

But also: First working example with a de Sitter extremum:

M(6) = SU(2) × SU(2)
Caviezel, Koerber, Körs, Lüst, Wrase, MZ (2008)

Flauger, Paban, Robbins, Wrase (2008)

Caviezel, Wrase, MZ (2009)
Danielsson, Haque, Koerber, Shiu, Van Riet, Wrase (2011)

More (early) examples:
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(ii) Is the smearing really a valid approximation?

(iii) No naturally small parameter ⇒ ρvac � (1meV)4

(i) So far, all examples have at least one tachyonic instability

E.g. Blåbäck, Danielsson, Junghans, Van Riet, Wrase, MZ (2010,2011)
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control !

Decreasing

computational

More difficult than expected
Doesn‘t work for het. string

Gautason, Junghans, MZ (2012)
Green, Martinec, Quigley, Sethi (2011)

Held, Lüst, Marchesano, Martucci (2010)
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Decreasing
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Doesn‘t work for het. string

Hard work!



An incomplete list of approaches:
Kachru, Kallosh, Linde, Trivedi (2003)

Burgess, Kallosh, Quevedo (2003)
Choi, Falkowski, Nilles, Olechowski, Pokorski (2004)

Parameswaran, Westphal (2006)
Westphal (2006)

Balasubramanian, Berglund, Conlon, Quevedo (2005)
Parameswaran,Ramos-Sanchez, Zavala (2010) 

Rummel, Westphal (2011)
Louis, Rummel, Valandro, Westphal  (2012)

Cicoli, Maharana, Quevedo, Burgess (2012)
Cicoli, Klevers, Krippendorf, Mayrhover, Quevedo, Valandro (2013)

Blåbäck, Roest, Zavala (2013)
Danielsson, Dibitetto (2013)

Rummel, Sumimoto (2014)
Braun, Rummel, Sumumoto, Valandro (2015)

Kallosh, Linde, Vercnocke, Wrase (2014)
Marsh, Vercnocke, Wrase (2014)

Guarino, Inverso (2015)
Retolaza, Uranga (2015)

Buchmüller,Dierigl, Ruehle, Schweizer (2016)  
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For de Sitter spacetime, this is in general a more severe 
problem than for Minkowski or anti-de Sitter spacetime.

One reason: Supersymmetry can be preserved in AdS 
and Mink vacua → protection against instability

But:  de Sitter vacua cannot preserve supersymmetry!
→ No general protection against instability 
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• Naively:

P(no tachyons) ∼ 2−Nscalars

More scalars → Tachyonic instability more likely

• More sophisticated estimates 
(in “random supergravity”):

Marsh, McAllister, Wrase (2011)
Chen, Shiu, Sumitomo, Tye (2011)

Sumitomo, Tye (2012)

P(no tachyon) ∼ exp[−cN1.3...1.5
scalars ]

• Typically: 

⇒ Perturbatively stable de Sitter vacua extremely rare ?

Nscalars = O(10) . . .O(100)
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However, statistical arguments based on random 
potentials need not necessarily be accurate.

In fact, string derived potentials are not random, but 
may have strucure (as seen e.g. in the no-go 
theorems against classical de Sitter vcaua)

There may be setups with special potentials in 
which tachyons are unlikely 

Conversely, there may be setups with unavoidable 
(universal) tachyons (e.g. the sGoldstino)

E.g. Kallosh, Linde, Vercnocke, Wrase (2014)
Marsh, Vercnocke, Wrase (2014) 

E.g. Covi, Gomez-Reino, Gross, Louis, Palma, Scrucca 
(2008)
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Another example:

All known classical de Sitter solutions are close to 
Minkowski solutions in parameter space

For the ones close to a no-scale Minkowski vacuum, one 
finds a universal tachyon (not the sGoldstino)

The observed tachyons in classical de Sitter vacua might 
be structural tachyons and not statistical tachyons.

E.g. Blåbäck, Danielsson, Dibitetto, Vargas (2015)

Junghans, MZ (2016)
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The extra dimensions of string theory may have 
observable consequences even if we can‘t resolve the 
extra dimensions or the strings with accelerator 
experiments. 

These consequences can often be understood in terms 
of the moduli fields (and axions) induced by the extra 
dimensions and involve topics such as inflation, 
supersymmetry breaking, dark matter or dark energy
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Focus in this talk:

A positive cosmological constant (about which we 
know from observations in the exreme IR!) is hard to 
reproduce explicitly, because 

•  no-go theorems rule out simple solutions
   → Computational control issues

•  generic dS solutions have tachyonic instabilities

But also: Potentials may have structure that favor
             or disfavor tachyons  

→ Strong filters for realistic string compactifications?
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(v,Φ)

V(v,Φ)

10D proof uses  Einstein and dilaton equation

⇒ Use O-planes &  negative internal curvature 

Vcurv ∝ −
�
d6x

√−gR(6)

But for :

→?

V

Vtot

(ρ, τ )(v,Φ)

�
d6x

√−g R(6) < 0

dS?



Based on:
Apruzzi, Gautason, Parameswaran, MZ (2014)
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Caviezel, Koerber, Körs, Lüst, Tsimpis, MZ (2008)

As well as
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Various effects (tree-level + quantum corrections) 
generate an effective 4D scalar potential for the moduli

φ1

φ2

V(φ)

φ*

Ideally:     V(φ*) = ρ    ≈ (1 meV)4
vac Mmoduli > O(30TeV)

Positive CC      Local minimum at V(φ*) > 0

Main topic of this talk
(surprisingly difficult!)
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Two problems:

1.  Find a critical point with  V(φ*) > 0

Problem:  Simple setups ruled out by no-go theorems

Too steep slope in v 
whenever  V>0

v (volume modulus)

V(v)

   E.g.:  Gibbons (1984);  
           de Wit, Smit, Hari Dass (1987)
           Maldacena, Nuñez (2000)
           Steinhardt, Wesley (2008)

(Schematically)
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Two problems:

1.  Find a critical point with  V(φ*) > 0

Problem:  Simple setups ruled out by no-go theorems

→ Need more complicated compactification setups:

1.  “Classical de Sitter vacua”
(Tree-level with orientifolds planes and negative 6D curvature)

2.  “Quantum de Sitter vacua”  
(Perturbative and non-perturbative quantum corrections relevant)

To evade no-go

To evade no-go

or
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Two problems:

2. Make sure critical point is really a local minimum!

Problem:  For many scalar fields, saddle points are
               much more likely!

Tachyonic instabilities generic!→

(No protection from SUSY in de Sitter)
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Meta-stability (usually not a problem)

de Sitter vacua of string theory are at best meta-stable

Reason: The limit of infinite compactification volume
            should approach the consistent solution Mink    

dS(4) × M(6)
vol(M(6)) → ∞

Mink(10)

(10)

V

Vtot

(ρ, τ )

meta-stable dS
v

V(v)

Decompacti-
fication limit

V(v)→0

Tunneling barrier
(usually sufficiently large)


