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gravity, at large length scales
> Jang-Mills, (small energies)
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— Unified, UV-finite description of all particles and
Interactions
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So far: No deviations from point particle behavior

in particle physics experiments

Con
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Hence:

1 string size < 107 "m ~ (1 TeV) !
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—| Strings must be tiny and

directly only affect physics
in the deep UV
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Implementing a positive cosmological constant (“dark
energy’) in string theory is surprisingly non-trivial!
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Mathematical consistency of string theory requires
extra dimensions (and supersymmetry)

Superstrings: 9 spatial + | temporal dimensions

Observation: 3 spatial + | temporal dimensions

— Standard scenario: “Compactification”

M0 — A(D) »« A1(6)

i -

Large & non-compact small & .
( = our familiar 4D world) compact (Slze RC )

At length scales AL >> R_ the world looks effectively 4D




High resolution

Low resolution




An important consequence of the extra dimensions:

Moduli fields

= One of the few model independent
predictions of string theory
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Moduli fields:

Light 4D scalar fields from higher dimensional field

components:

E.g. metric fluctuations:
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* Moduli vevs parameterize background
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deformations that cost no/little energy

* Light moduli cause phenomenological problems

(Sth force, varying fund. constants, BBN, overclosure,...)

Avoided for Mpoq > (30TeV)?
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2. de Sitter vacua in string theory




Our assumption:

Today's accelerated expansion of the Universe is
due to a positive vacuum energy density

Pvac ~ (I meV)* > 0
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For Pvac = const. : | pyac ~ N > 0 (cosmological constant)

=|Universe asymptotes 4D de Sitter spacetime
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What do we mean by a de Sitter
vacuum of string theory!?

|0D perspective:

Find a consistent and perturbatively stable
compactification of string theory of the form

M) = M) x MO

Disadvantages:

* |0OD equations hard to solve
* Perturbative stability hard to check
* Connection to familiar 4D physics less immediate
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Work in the 4D effective theory with
many moduli and effective potential V()

V()

= |nstead:

Main topic of this talk

Goal: | A local minimum atV(g*) > 0 (surprisingly difficult)

deally: | V(©*) =p,.. = (I meV)* | Mumoaui > O(30 TeV)
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How does one compute V()?

String theory has two fundamental expansion parameters:

8s (string coupling) < Loop expansion

;b/ﬁ ==

g2(t—1)

o’ = I2=(string Iength)2 < Deviation from
point particle limit

=2
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Lowest order in g and o’ = I

& “Supergravity approximation”

= a classical field theory for the massless string modes

Classical 10D -
supergravity Ssugra = |/ d7'x \/ER +.

T

Natural first attempt:
Try to find de Sitter vacua using only this!

= | “Classical”’ de Sitter vacua
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3 powerful no-go theorems against de Sitter

compactifications in the supergravity approximation !

E.g.. Gibbons (1984);
de Wit, Smit, Hari Dass (1987)
Maldacena, Nunez (2000)

Simplest version: Steinhardt, Wesley (2008)

If null energy condition (NEC) is satisfied, i.e. if
TMNHMHNEO, n-n=2>0

dS; xw M(® is not a solution of the supergravity

approximation!




Manifestation in 4D field theory:

V(V) A
@ Too steep slopeinv
l whenever V>0

\—f v'(volume modulus)

= No de Sitter vacua possible (and no slow roll inflation)
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(ii) Stay classical but violate NEC
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extended objects with negative tension T:
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Hertzberg, Kachru, Taylor, Tegmark (2007)
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O-planes Negative internal curvature
A strategy:
(i) “Smear” the O-planes: (if) Use group or coset

manifolds for AA(6)

- Q M® =G or G/H

M(ﬁ) M(G)

“Smeared” O-planes

— Back-reaction & dimensional reduction well-understood



Despite these simplifications, one finds:

Most models can be ruled out by weaker no-go
theorems along other field directions

V(o)
@ Too steep slope in particular direction o & (v, ®)
l whenever V>0

\f ’




But also: First working example with a de Sitter extremum:

Caviezel, Koerber, Kors, Lust,VWrase, MZ (2008)
M) = SU(2) x SU(2)
Flauger, Paban, Robbins,VWrase (2008)

More (early) examPIeS: Caviezel,Wrase, MZ (2009)
Danielsson, Haque, Koerber, Shiu,Van Riet,Wrase (201 )

Related important early works: Silverstein (2007)
Haque, Shiu, Underwood,Van Riet (2008)

Danielsson, Haque, Shiu,Van Riet (2009)

Andriot, Goi, Minasian, Petrini (2010)

Dong, Horn, Silverstein, Torroba (2010)

Danielsson, Koerber,Van Riet (2010)
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(i) So far, all examples have at least one tachyonic instability

(Saddle points, not minima)

V(p) 1

F?/ac ------- 7‘-?\

(ii) Is the smearing really a valid approximation!?
E.g. Blaback, Danielsson, Junghans,Van Riet,Wrase, MZ (2010,201 I)
(iii) No naturally small parameter = pvac > (1 meV)?
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More difficult than expected Held, Lust, Marchesano, Martucci (2010)

_—
Classical 10D
supergravity

Gautason, Junghans, MZ (2012)
Green, Martinec, Quigley, Sethi (201 1)
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More difficult than expected

Doesn‘t work for het. string

_—
Classical 10D &’ corrections

g, corrections Dec reasing

computational

control !

Hard work!




An incomplete list of approaches:

Kachru, Kallosh, Linde, Trivedi (2003)

Burgess, Kallosh, Quevedo (2003)

Choi, Falkowski, Nilles, Olechowski, Pokorski (2004)
Parameswaran, Westphal (2006)

Westphal (2006)

Balasubramanian, Berglund, Conlon, Quevedo (2005)
Parameswaran,Ramos-Sanchez, Zavala (2010)
Rummel,Westphal (201 I)

Louis, Rummel,Valandro,Westphal (2012)

Cicoli, Maharana, Quevedo, Burgess (2012)

Cicoli, Klevers, Krippendorf, Mayrhover, Quevedo,Valandro (201 3)
Blaback, Roest, Zavala (2013)

Danielsson, Dibitetto (201 3)

Rummel, Sumimoto (2014)

Braun, Rummel, Sumumoto,Valandro (2015)

Kallosh, Linde,Vercnocke,Wrase (2014)
Marsh,Vercnocke,Wrase (2014)

Guarino, Inverso (2015)

Retolaza, Uranga (2015)

Buchmuller,Dierigl, Ruehle, Schweizer (2016)
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For de Sitter spacetime, this is in general a more severe
problem than for Minkowski or anti-de Sitter spacetime.

One reason: Supersymmetry can be preserved in AdS
and Mink vacua — protection against instability

But: de Sitter vacua cannot preserve supersymmetry!
— No general protection against instability
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More scalars = Tachyonic instability more likely

* Naively:

* More sophisticated estimates Marsh, McAllister, Wrase (2011)
(in “random supergravity”):

P (no tachyons) ~ 27 Nscalas

Chen, Shiu, Sumitomo, Tye (201 I)
Sumitomo, Tye (2012)

1.3...1.5
scalars

P(no tachyon) ~ exp|[—cN

* Typically: Ngcaiars = O(10) ... O(100)

=

Perturbatively stable de Sitter vacua extremely rare !
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However, statistical arguments based on random
potentials need not necessarily be accurate.

In fact, string derived potentials are not random, but
may have strucure (as seen e.g.in the no-go
theorems against classical de Sitter vcaua)

There may be setups with special potentials in

which tachyons are unlikely

E.g. Kallosh, Linde,Vercnocke,Wrase (2014)
Marsh,Vercnocke,Wrase (2014)

Conversely, there may be setups with unavoidable
(universal) tachyons (e.g. the sGoldstino)

E.g. Covi, Gomez-Reino, Gross, Louis, Palma, Scrucca

(2008)
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Another example:

All known classical de Sitter solutions are close to
Minkowski solutions in parameter space

E.g. Blaback, Danielsson, Dibitetto,Vargas (2015)

For the ones close to a no-scale Minkowski vacuum, one
finds a universal tachyon (not the sGoldstino)

Junghans, MZ (2016)

The observed tachyons in classical de Sitter vacua might
be structural tachyons and not statistical tachyons.
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The extra dimensions of string theory may have
observable consequences even if we can‘t resolve the
extra dimensions or the strings with accelerator
experiments.

These consequences can often be understood in terms
of the moduli fields (and axions) induced by the extra
dimensions and involve topics such as inflation,
supersymmetry breaking, dark matter or dark energy
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Focus in this talk:

A positive cosmological constant (about which we
know from observations in the exreme IR!) is hard to
reproduce explicitly, because

* no-go theorems rule out simple solutions
— Computational control issues

» generic dS solutions have tachyonic instabilities

But also: Potentials may have structure that favor
or disfavor tachyons

— Strong filters for realistic string compactifications?
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|0D proof uses Einstein and dilaton equation

But for [ d®xy/—g R® < 0 :

V(v,®) 4 ‘

...
N
---------

K () '\ (v P)
dS?

= | Use O-planes & negative internal curvature




Based on:

Apruzzi, Gautason, Parameswaran, MZ (2014)

Junghans, Schmidt, MZ (2014)

Bena, Junghans, Kuperstein,Van Riet,Wrase, MZ (2012)
Gautason, Junghans, MZ (2012, 201 3)

Blaback, Danielsson, Junghans,Van Riet,Wrase, MZ (2010,2011)

As well as

Wrase, MZ (2010)

Caviezel,Wrase, MZ (2009)

Caviezel, Koerber, Kors, Lust,Wrase, MZ (2008)
Caviezel, Koerber, Kors, Lust, Tsimpis, MZ (2008)
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Various effects (tree-level + quantum corrections)
generate an effective 4D scalar potential for the moduli

V(®)

| Main topic of this talk

(PI* P (surprisingly difficult!)
}
Positive CC | < > | Local minimum atV(p*) > 0

deally: | V(©*) =p,.. = (I meV)* | Mumoaui > O(30 TeV)
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|. Find a critical point with V(™) > 0

Problem: Simple setups ruled out by no-go theorems

E.g.:. Gibbons (1984);
de Wit, Smit, Hari Dass (1987)

> Too steen slobe in v Maldacena, Nunez (2000)
l whenever V>0 Steinhardt, VWesley (2008)

\—F v,(volume modulus)

(Schematically)

V(v) ¢
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Two problems:

. Find a critical point with V(p*) > 0

Problem: Simple setups ruled out by no-go theorems

— Need more complicated compactification setups:

|. “Classical de Sitter vacua”

(Tree-level with orientifolds planes and negative 6D curvature)

/

or To evade no-go
2. “Quantum de Sitter vacua”

(Perturbative and non-perturbative quantum corrections relevant)

1

To evade no-go
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Two problems:

2. Make sure critical point is really a local minimum!

Problem: For many scalar fields, saddle points are
much more likely!

— | Tachyonic instabilities generic!

(No protection from SUSY in de Sitter)
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Meta-stability (usually not a problem)

de Sitter vacua of string theory are at best meta-stable

Reason: The limit of infinite compactification volume "
should approach the consistent solution Mink!'”

vol(M () — oo

dS® x AM©® . Mink(0)

V(v) | Tunneling barrier

Ve / (usually sufficiently large)
Decompacti-
>

\ fication limit
v V(v)—0
meta-stable dS




