
Quantum Geometry in Cosmology

Marvin Pinkwart
19. January 2018 – 10:30 – RTG Models of Gravity Workshop Jacobs University Bremen

Jacobs University Bremen

1/16



Table of contents

1. Motivation

Quantum Spacetime and Quantum Gravity

Cosmology

2. Fuzzy Singularity

3. Methods for Investigating Possible Signatures in CMB

2/16



Motivation



Gravitational Stability Against Localization of Events

Quantum gravity ⇒ spacetime uncertainty relations and coarse graining as effective ’semiclassical’
effect → phenomenological approach

Principle of gravitational stability against localization of events
Following Heisenberg length measurement to precision ∆x induces momentum uncertainty ∆p that
allows energy E ∼ (∆x )−1 to localize in region ∆x . Large energy density creates event horizon
r ∼ E ∼ l2pl (∆x )−1 . The horizon should not hide the length measurement, hence ∆x ≥ lpl .

• Refinement: ∆t
∑

i ∆x i ≥ l2pl and
∑

i 6=j ∆x i ∆x j ≥ l2pl (Doplicher, Fredenhagen, Roberts ’95).
Valid in Quantum Minkowski and in similar fashion in curved space.

• Gravity + QM ⇒ quantization of spacetime → noncommutative geometry (effective theory)

• In nonassociative models: Also volume quantization

• NC and NA emerge naturally in quantization: NC ↔ non-zero magnetic flux; NA ↔ non-zero
magnetic charge. (Jackiw ’ 04)
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Quantum Spacetime – Quantization

Apply quantization procedures to spacetime manifold itself

Quantization

• Quantization map ρ : ACM ↪→ AQM between observable algebras such that classical states
ω : ACM → C (positive, linear functionals) are classical limits of QM states ω̃ : AQM → C.

• Quantization: commutative → noncommutative
• Mainly use Hamiltonian approach: phase space P, observables (C (P), {., .}PB), states
ω : f 7→

∫
f dµ(ω), pure states δx . In general ACM Poisson-∗-algebra.

• Canonical: AQM =̃ B (H), ρ defines ordering prescription, e.g. standard or Weyl ordering. Replace PB
by commutator ⇔ non-trivial Lie integration of Poisson to Quantomorphisms.

• Deformation: AQM =̃ (C (P)[[λ]], ∗). ρ defines ∗-product (connected to ordering and symmetries).
• Geometric: Here Schrödinger picture is used and H of states is constructed from symplectic (P, ω).
• Constraints: Symmetry vs reduction
• Points in phase space no longer states in QM! ⇒ strict locality lost

• Quantum Spacetime/Noncommutative Geometry: Find proper quantization map for spacetime,
e.g. for de Sitter, that reduces to classical spacetime in some classical limit. Then: NC gauge
theory, NC gravity, etc.

• For example NC gravity:
1. Deformed diffeomorphisms
2. Gravity as NC gauge theory
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Quantum Spacetime – Examples of Quantum Spacetimes and Quantization Strategies

Examples/Quantization Strategies

• Often: Impose classical symmetries and extend spacetime to larger spacetime including
symmetry generators (e.g. Buric, Madore for dS or Steinacker for FLRW.)

• Matrix Models: Often IKKT (reduce SYM to 0D) or BFSS (reduce SYM to 1D). Spacetime =̂
spectrum of matrices. Can construct coherent states in this approach. Application of IKKT to
cosmology due to H. Steinacker (→ singularity =̂ signature change in hyperbolic model [last
colloquium at Jacobs])

• Doplicher, Fredenhagen, Roberts ’95 (DFR):

[q̂µ , q̂ν ] = i Q̂µν

[Q̂µν , q̂ρ ] = 0

Q̂µνQ̂µν = 2( ~̂m2 − ~̂e2) = 0

(Q̂µν (∗Q̂)µν )2 = 4([~̂e •, ~̂m]+)2 = 16 · 1̂

Important properties: Unitarity despite space-time NC and Lorentz invariance despite coarse
graining

• BTZ black hole quantization: (Dolan, Gupta, Stern ’09) Use geometric identity BTZ
= AdS3/ ∼, then contruct Poisson brackets compatible with symmetry ⇒ t̂-spectrum
nτ − aτ/2π where α = aτ/(2π) labels irreps.
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Problems of Standard (non-inflationary) Cosmology

• Horizon problem: See next slide

• Flatness problem: Ω(t) :=
∑

i=mat,rad ,Λ Ωi (t) ⇒ |Ω− 1|(t) = |k|
(aH)2(t) . Hubble horizon aH

is shrinking ⇒ |Ω− 1| = 0 unstable point. Again fine-tuning problem: |Ω− 1|(tpl ) < 10−60 .

• Monopole Problem: (Preskill ’79) GUTs produce magnetic monopoles, cosmic evolution too
slow to reduce density below current upper bounds.

• Structure formation problem: Non-inflationary evolution does not enhance primordial
quantum fluctuations enough to account for fluctuations in CMB and today’s structure in
universe.

All fine-tuning problems
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Horizon Problem – Causal Structure

LSS

Observer today

Backward light cone

Singularity

z=∞

z≃zrec≃1100

η

ds2 = a2(η)(−dη2 + γ) = −dt2 + a2(t)γ , z + 1 = a0/a
luniv
lLSS

=
∫ t0
0

dt′
a(t′ )∫ tLSS

0
dt′

a(t′ )
=

∫ a0
0

da′
H(a′ )(a′ )2∫ aLSS

0
da′

H(a′ )(a′ )2
. for MD a ∼ t2/3 , H ∼ a−3/2 , for RD a ∼ t1/2 , H ∼ a−2 ,

hence largest contribution from MD ⇒
(

luniv
lLSS

)2
≈
( √

a0√
aLSS

)2
= 1 + zLSS ≈ 1100. Fine-tuning

problem.
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Usual Solution: Inflation - Horizon

LSS

Observer today

Backward light cone

Reheating

Singularity

η=0

η=-∞

η≃ηrec

η

Problem: Inflation only accurate down to t = tpl ⇒ horizon problem strikes back at some
t � t0 8/16



Time and Length Scales

Time

• In general evolution time 6= coordinate time. Consider e.g. Hamiltonian constraint in Canonical
QG Ĥ|Ψ〉 = 0 (Wheeler-deWitt) → no explicit time evolution, but statics? No! Relative
evolution.

• A priori: entropic time 6= coordinate time 6= relative time

Length Scales

• Consider standard cosmology. QG effects become important when T ≈ Tpl . Then fundamental
length scale lpl defined with respect to physical distance ∆s ∼ lpl , but often ∆x ∼ lpl . But
∆x ∼ a−1∆s , hence ∆x ∼ alpl ?

• Extra dimensions: l
(4)
pl =

(l (D)
pl )D/2−1
√

V
(Arkani-Hamed, Dimopoulus, Dvali ’98) → Planck length

might be smaller than it appears.

• Planck’s constant might really be operator (Heckmann, Verlinde ’15) [x̂ , p̂] ∼ ~̂. Define Planck
length l̂2pl = ~̂GN /c3 such that length scales ∈ spec(l̂ )?

• Planck mass might be even variable in space and time: variable gravity (Wetterich ’14)
Meff

pl ∼ χ (t, ~x ) cosmon.
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Fuzzy Singularity



Horizon Problem – Initial Time Uncertainty

light cone

t(x)

Δx(t<<1) = Δt/|t'(x) t=0 =∞

Δt

t' = 0

x

t

In radiation domination: Small time uncertainty ⇒ infinite space uncertainty
10/16



Fuzzy Singularity I – Heuristic Idea

Imposing small time uncertainty at early times leads to fuzzy light cones

”dusty” singularity and ”stacked” multiverses. For horizon problem no need of inflation. Problem:
How to ”average”?
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Fuzzy Singularity II – Commutation Relations

Space-time commutation relations

[t̂, x̂ j ] = iλα̂ j (t, ~r )
[α̂ j , x̂k ] = [α̂ j , t̂ ] = 0

with ~̂α vector-valued Hermitian operator, that transforms covariantly and is central in the algebra.

Uncertainty: ∆x j ∆t ≥ λ
2 α

j (t, ~r ) with α j := |〈α̂ j 〉|. Lightlike curve satisfies |γ̇s |(t) = 1
|a(t)| in

comoving coordinates. Impose ∆t at some early time → geodesic inherits uncertainty
∆γs (t, ~r ) = ∆t

a(t) ≥
λ
2
α i (t,~r )
|a|

1
∆x . If ∆x = ∆γs ⇒

Uncertainty

∆x i ≥

√
λα j

2|a|
α j slowly varying−→ ∞(t → 0)

Note: Doplicher, Morsella, Pinamonti ’13: Related idea. Using DFR-model, showed that
’localization region’ diverges for t → 0.
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Fuzzy Singularity III – Deferred Measurement

How to measure ∆t?

Deferred Measurement Principle
In a quantum circuit measurements and operations may be interchanged. ⇒ Measurement may be
shifted to the end.

• Measurement: Positive operator valued measure (POVM): {Êi} self-adjoint operators with∑
i Êi = 1̂. Writing ρ̂ =

∑
i Êi ρ̂ → measurement ρ̂ 7→ Êi ρ̂ with probability Pi = Tr(Êi ρ̂) .

• Operations/Quantum channel: Completely positive maps between density matrices. In
canonical Kraus form: ρ̂ 7→ ρ̂′ =

∑r
i=1 Âi ρ̂Â

†
i with

∑r
i=1 Â

†
i Âi = 1̂ and Tr(Â†i Âj ) = di δij ,∑r

i=1 di = dim(H) with r the Kraus rank.

• Most general temporal evolution given by Lindblad equation (like above plus two additional
terms)

⇒ Strategy: Follow photon with energy uncertainty (induced by time uncertainty), then initial time
uncertainty should be detectable much later (e.g. on LSS).
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Methods for Investigating Possible
Signatures in CMB



CMB

Image from Planck 2015 results (Ade et al. ’15)

• Relic black body radiation from LSS at about z ≈ 1100 shortly after recombination

• Small anisotropies depict energy density fluctuations from primordial quantum fluctuations

• Observation on celestial sphere: δT
T0

=
∑∞

l=1

∑l
m=−l almYlm with T0 ≈ 2.7K and

δT
T0
∼ 10−5 − 10−4 .

• Question: Is δT Gaussian and isotropic random field? Isotropy: (weak/statistical) cosmological
principle. Gaussianity: e.g. inflation.

• (1) What are QS signatures in CMB? (2) Are they present in the data?
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Multipole vectors

Fixed multipole: {alm}
1:1↔ {~v (l ,i ) ∈ RP2} depicted as l unit vectors in one hemisphere. Isotropic

and Gaussian temperature fluctuations ⇒ MPVs feel repulsion. not uniformly distributed.

(Pinkwart, Schwarz; in prep)
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S (l ) = 1
l

∑l
i=1 |~v (l ,i ) · ~D|, ~D cosmic dipole. (Anti-)correlation on large angular scales → nature of

dipole not fully understood or other effects?
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Pseudo Entropies

Strategy: pure states yield vanishing von Neumann entropy → construct mixed density matrix such
that entropy is rotationally invariant.

(Pinkwart, Schupp; in prep)

Sang (l ) = −Tr(ρang (l ) ln(ρang (l ))) with ρang (l ) = 1
l (l+1)

∑3
i=1 Liρ(l )Li , where ρ(l ) = |Ψl 〉〈Ψl |

and |Ψl 〉 =
∑l

m=−l ãlm|l ,m〉, ãlm = alm∑l
n=−l aln

.
Minimal for Bloch coherent states (?) ; maximal for maximally mixed ρang .
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Conclusion

• — Phenomenological description of QG → Quantum geometry
• — Quantizing spacetime ⇒ Functions on manifold →

Noncommutative algebra
• — Small initial time uncertainty causally connects all initial points
• — Possible tools for investigating signatures in CMB: MPVs and

pseudo-entropies
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