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Motivation




Gravitational Stability Against Localization of Events

Quantum gravity = spacetime uncertainty relations and coarse graining as effective 'semiclassical’
effect — phenomenological approach

Principle of gravitational stability against localization of events

Following Heisenberg length measurement to precision Ax induces momentum uncertainty Ap that
allows energy E ~ (Ax)™? to localize in region Ax. Large energy density creates event horizon
r~E~ lg,(Ax)_l. The horizon should not hide the length measurement, hence Ax > 1.

e Refinement: Aty ; Ax' > Ig, and Zi#j AX'Ax) > Ig, (Doplicher, Fredenhagen, Roberts '95).
Valid in Quantum Minkowski and in similar fashion in curved space.

e Gravity + QM = quantization of spacetime — noncommutative geometry (effective theory)
e In nonassociative models: Also volume quantization

e NC and NA emerge naturally in quantization: NC <> non-zero magnetic flux; NA <> non-zero
magnetic charge. (Jackiw ' 04)
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Quantum Spacetime — Quantization

Apply quantization procedures to spacetime manifold itself

Quantization

o Quantization map p : Acm — Agm between observable algebras such that classical states
w : Acm — C (positive, linear functionals) are classical limits of QM states & : Agu — C.

e Quantization: commutative — noncommutative

e Mainly use HamiLToNIAN approach: phase space P, observables (C(P), {.,.}pB), states
w: f [ fdu(w), pure states dy. In general Acy Poisson-*-algebra.

Canonical: Agm = B($)), p defines ordering prescription, e.g. standard or Weyl ordering. Replace PB
by commutator < non-trivial Lie integration of Poisson to Quantomorphisms.

Deformation: Agw = (C(P)[[A]], %). p defines s-product (connected to ordering and symmetries).
Geometric: Here Schrodinger picture is used and §) of states is constructed from symplectic (P, w).
Constraints: Symmetry vs reduction

Points in phase space no longer states in QM! = strict locality lost

o QuanTuM SpAcETIME/NoNcOMMUTATIVE GEOMETRY: Find proper quantization map for spacetime,
e.g. for de Sitter, that reduces to classical spacetime in some classical limit. Then: NC gauge

theory, NC gravity, etc.

e For example NC gravity:

1.
2.

Deformed diffeomorphisms
Gravity as NC gauge theory
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Quantum Spacetime — Examples of Quantum Spacetimes and Quantization Strategies

Examples/Quantization Strategies
e Often: Impose classical symmetries and extend spacetime to larger spacetime including
symmetry generators (e.g. Buric, Madore for dS or Steinacker for FLRW.)

e Martrix Mobets: Often IKKT (reduce SYM to 0D) or BFSS (reduce SYM to 1D). Spacetime =
spectrum of matrices. Can construct coherent states in this approach. Application of IKKT to
cosmology due to H. Steinacker (— singularity = signature change in hyperbolic model [last
colloguium at Jacobs])

o DopLiCHER, FREDENHAGEN, RoBERTS 'g5 (DFR):

@, 4" = i@
16", 471 =0
Q" =2(m? - &) =0
(Qu(=Q)"™)* = 4(&* m,)* =161
IMPORTANT PROPERTIES: Unitarity despite space-time NC and Lorentz invariance despite coarse
graining
e BTZ srack HoLE QuanTizATION: (Dolan, Gupta, Stern '09) Use geometric identity BTZ

= AdS3/ ~, then contruct Poisson brackets compatible with symmetry = f-spectrum
nt — at/2x where a = at/(2n) labels irreps.
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Problems of Standard (non-inflationary) Cosmology

o HorizoN PROBLEM: See next slide

o FLATNESS PROBLEM: Qt) i= Y ;_or g Qi(t) = [Q—1|(2) = % Hubble horizon aH
is shrinking = |Q — 1| = O unstable point. Again fine-tuning problem: |Q — 1|(ty) < 107°C.

o MonoproLE ProBLEM: (Preskill '79) GUTs produce magnetic monopoles, cosmic evolution too
slow to reduce density below current upper bounds.

e STRUCTURE FORMATION PROBLEM: Non-inflationary evolution does not enhance primordial
quantum fluctuations enough to account for fluctuations in CMB and today’s structure in
universe.

All FINE-TUNING PROBLEMS
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Horizon Problem — Causal Structure

Observer today

25216621100 Backward light cone LSS
Z=c0
Singularity
ds? = a%(n)(—dn? + y) = —dt?> + a%(t)y , z+ 1 = ag/a
/ Jo? df o° H( dia(/ 2
univ. at)  _ o) 2/3 —3/2 1/2 —2
@7{@51“,7 35Sy forMD a~t23 H~a32 forRD a~t2 H~ 2
a(t’) 0 HE)E)?

2 2 ) )
hen;le largest contribution from MD = ( ;‘Z’;’SV ) I~ ( \/\ﬁ;gs) =1+ 255 =~ 1100. Fine-tuning
problem.

716



Usual Solution: Inflation - Horizon

Observer today

Backward light cone LSS

Reheating

n=-co

Singularity

PROBLEM: INFLATION ONLY ACCURATE DOWN TO t = tp\ = HORIZON PROBLEM STRIKES BACK AT SOME
t>ty
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Time and Length Scales

Time

o In general evolution time # coordinate time. Consider e.g. Hamiltonian constraint in Canonical
QG A|W) = 0 (Wheeler-deWitt) — no explicit time evolution, but statics? No! Relative
evolution.

e A priori: entropic time # coordinate time # relative time

Length Scales

o Consider standard cosmology. QG effects become important when T = Tp. Then fundamental
length scale I, defined with respect to physical distance As ~ I, but often Ax ~ /. But
Ax ~ a~1As, hence Ax ~ alp?

/(4) B (,Il’?))D/zq

Pl VvV
might be smaller than it appears.

e Extra dimensions: (Arkani-Hamed, Dimopoulus, Dvali '98) — Planck length

e Planck’s constant might really be operator (Heckmann, Verlinde '15) [%, ] ~ fi. Define Planck
length IE, = hGy/c3 such that length scales spec(f)?

e Planck mass might be even variable in space and time: variable gravity (Wetterich "14)
M;ff ~ x(t, X) cosmon.
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Fuzzy Singularity




Horizon Problem — Initial Time Uncertainty

t
t(x)

Ax(t<<1) = At/|t'(x)

light cone

In radiation domination: Small time uncertainty = infinite space uncertainty
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Fuzzy Singularity | — Heuristic Idea

Imposing small time uncertainty at early times leads to fuzzy light cones

/—\\ov)m?j

3t

"dusty” sinqularity and "stacked” multiverses. For horizon problem no need of inflation. Problem:
How to "average”?

1/16



Fuzzy Singularity Il — Commutation Relations

Space-time commutation relations

[£, &) = iAad (¢, P)

[&/, %K=&/, f]=0

with @ vector-valued Hermitian operator, that transforms covariantly and is central in the algebra.

Uncertainty: Ax/At > %aj(t, F) with o/ := |(&7)]. Lightlike curve satisfies |ys|(t) = ‘a(lt” in
comoving coordinates. Impose At at some early time — geodesic inherits uncertainty

— At 2d(A) 1 -
Ays(t, F) = FEl >3 o Ax If Ax = Ays =

Uncertainty

. Ad af slowly varyi
B 2[5 T ot > 0)

Note: Doplicher, Morsella, Pinamonti "13: Related idea. Using DFR-model, showed that
"localization region” diverges for t — 0.
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Fuzzy Singularity Ill — Deferred Measurement

How to measure At?

Deferred Measurement Principle
In a quantum circuit measurements and operations may be interchanged. = Measurement may be
shifted to the end.

e MEeASUREMENT: Positive operator valued measure (POVM): {E} self-adjoint operators with
i E =1. Writing p =3 Ep — measurement p — Ep with probability P; = Tr(E p) .

o OprerATIONS/QuANTUM CHANNEL: Completely positive maps between density matrices. In
canonical Kraus form: p— p' =%, A,-i)A,.T with Y7, A,.TA,- =1 and Tr(A,TAj) = d;dy;,
> i_1 di = dim(H) with r the Kraus rank.

e Most general temporal evolution given by Lindblad equation (like above plus two additional
terms)

= Strategy: Follow photon with energy uncertainty (induced by time uncertainty), then initial time
uncertainty should be detectable much later (e.g. on LSS).
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Methods for Investigating Possible
Signatures in CMB




CMB

Image from Planck 2015 results (Ade et al. '15)

o Relic black body radiation from LSS at about z =~ 1100 shortly after recombination

e Small anisotropies depict energy density fluctuations from primordial quantum fluctuations

e Observation on celestial sphere: % =y Zf,,=,/ ajm Yim with To ~ 2.7K and
5T -5 —4
T~ 107> —107".

e Question: Is 0 T Gaussian and isotropic random field? Isotropy: (weak/statistical) cosmological
principle. Gaussianity: e.g. inflation.

® (1) WHAT ARE QS SIGNATURES IN CMB? (2) ARE THEY PRESENT IN THE DATA?
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Multipole vectors

Fixed multipole: {ajm} 8 {") € RP2} depicted as / unit vectors in one hemisphere. Isotropic
and Gaussian temperature fluctuations = MPVs feel repulsion. NoT uniformly distributed.

(Pinkwart, Schwarz; in prep)
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S = %Z;Zl [Al) 5| D cosmic dipole. (Anti-)correlation on large anqgular scales — nature of
dipole not fully understood or other effects?
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Pseudo Entropies

Strategy: pure states yield vanishing von Neumann entropy — construct mixed density matrix such
that entropy is rotationally invariant.

(Pinkwart, Schupp; in prep)

il 3ot99.8%)
= 20156%)

o)
coherent sate
.

)

30(99.8%)

1
0G13]— Sy
- ®
g
E

0(68%)

----- coherent state ~g—4—0—4~" g0~ 9—0—4—0—o 4

log(,

..... | |- 04— WMAPILC Ty

EEE B S S S S S R e 890 892 894 896 898 00 902 904 06 905 910
! 1

Sang (1) = =Tr(pang (1) In(pang (1) with pang (1) = 7igy X7y Lip(1)Li, where p(l) = |W)(¥)]
and (W) =" _ G|l m), G, = ﬁ
Minimal for Bloch coherent states (?) ; maximal for maximally mixed Pang-

16/16



Conclusion

— Phenomenological description of QG — Quantum geometry

— Quantizing spacetime = Functions on manifold —
Noncommutative algebra

— Small initial time uncertainty causally connects all initial points

— Possible tools for investigating signatures in CMB: MPVs and
pseudo-entropies
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