Quantum Geometry in Cosmology

Marvin Pinkwart

Jacobs University Bremen
1. Motivation
 - Quantum Spacetime and Quantum Gravity
 - Cosmology

2. Fuzzy Singularity

3. Methods for Investigating Possible Signatures in CMB
Motivation
Gravitational Stability Against Localization of Events

Quantum gravity \Rightarrow spacetime uncertainty relations and coarse graining as effective ‘semiclassical’ effect \rightarrow phenomenological approach

Principle of gravitational stability against localization of events

Following Heisenberg length measurement to precision Δx induces momentum uncertainty Δp that allows energy $E \sim (\Delta x)^{-1}$ to localize in region Δx. Large energy density creates event horizon $r \sim E \sim l_{pl}^2(\Delta x)^{-1}$. The horizon should not hide the length measurement, hence $\Delta x \geq l_{pl}$.

- Refinement: $\Delta t \sum_i \Delta x^i \geq l_{pl}^2$ and $\sum_{i \neq j} \Delta x^i \Delta x^j \geq l_{pl}^2$ (Doplicher, Fredenhagen, Roberts ’95). Valid in Quantum Minkowski and in similar fashion in curved space.
- Gravity + QM \Rightarrow quantization of spacetime \rightarrow noncommutative geometry (effective theory)
- In nonassociative models: Also volume quantization
- NC and NA emerge naturally in quantization: NC \leftrightarrow non-zero magnetic flux; NA \leftrightarrow non-zero magnetic charge. (Jackiw ’04)
Quantum Spacetime – Quantization

Apply quantization procedures to spacetime manifold itself

Quantization

- Quantization map $\rho : A_{CM} \leftrightarrow A_{QM}$ between observable algebras such that classical states $\omega : A_{CM} \rightarrow \mathbb{C}$ (positive, linear functionals) are classical limits of QM states $\tilde{\omega} : A_{QM} \rightarrow \mathbb{C}$.

- Quantization: commutative \rightarrow noncommutative

- Mainly use HAMILTONIAN approach: phase space \mathcal{P}, observables $(C(\mathcal{P}), \{., .\}_{PB})$, states $\omega : f \mapsto \int f d\mu(\omega)$, pure states δ_x. In general A_{CM} Poisson-\ast-algebra.
 - Canonical: $A_{QM} \cong \mathcal{B}(\mathcal{S})$, ρ defines ordering prescription, e.g. standard or Weyl ordering. Replace PB by commutator \leftrightarrow non-trivial Lie integration of Poisson to Quantomorphisms.
 - Deformation: $A_{QM} \cong (C(\mathcal{P})[[\lambda]], \ast)$. ρ defines \ast-product (connected to ordering and symmetries).
 - Geometric: Here Schrödinger picture is used and \mathcal{S} of states is constructed from symplectic (\mathcal{P}, ω).
 - Constraints: Symmetry vs reduction
 - Points in phase space no longer states in QM! \Rightarrow strict locality lost

- Quantum Spacetime/Noncommutative Geometry: Find proper quantization map for spacetime, e.g. for de Sitter, that reduces to classical spacetime in some classical limit. Then: NC gauge theory, NC gravity, etc.

- For example NC gravity:
 1. Deformed diffeomorphisms
 2. Gravity as NC gauge theory
Quantum Spacetime – Examples of Quantum Spacetimes and Quantization Strategies

Examples/Quantization Strategies

• Often: Impose classical symmetries and extend spacetime to larger spacetime including symmetry generators (e.g. Buric, Madore for dS or Steinacker for FLRW.)

• **Matrix Models:** Often IKKT (reduce SYM to 0D) or BFSS (reduce SYM to 1D). Spacetime $\hat{=} \text{spectrum of matrices}$. Can construct coherent states in this approach. Application of IKKT to cosmology due to H. Steinacker (\rightarrow singularity $\hat{=} \text{signature change in hyperbolic model [last colloquium at Jacobs]}$)

• **Doplicher, Fredenhagen, Roberts ’95 (DFR):**

\[
[\hat{q}^\mu, \hat{q}^\nu] = i\hat{Q}^{\mu\nu}
\]
\[
[\hat{Q}^{\mu\nu}, \hat{q}^\rho] = 0
\]
\[
\hat{Q}_{\mu\nu} \hat{Q}^{\mu\nu} = 2(\hat{m}^2 - \hat{e}^2) = 0
\]
\[
(\hat{Q}_{\mu\nu}(\ast \hat{Q})^{\mu\nu})^2 = 4([\hat{e} \cdot \hat{m}]_+)^2 = 16 \cdot \hat{1}
\]

Important properties: Unitarity despite space-time NC and Lorentz invariance despite coarse graining

• **BTZ black hole quantization:** (Dolan, Gupta, Stern ’09) Use geometric identity BTZ $= AdS^3/\sim$, then contract Poisson brackets compatible with symmetry $\Rightarrow \hat{t}$-spectrum $n\tau - a\tau/2\pi$ where $\alpha = a\tau/(2\pi)$ labels irreps.
Problems of Standard (non-inflationary) Cosmology

- **Horizon problem:** See next slide

- **Flatness problem:** \(\Omega(t) := \sum_{i=\text{mat, rad, } } \Omega_i(t) \Rightarrow |\Omega - 1| (t) = \frac{|k|}{(aH)^2(t)} \). Hubble horizon \(aH \) is shrinking \(\Rightarrow |\Omega - 1| = 0 \) unstable point. Again fine-tuning problem: \(|\Omega - 1| (t_{pl}) < 10^{-60} \).

- **Monopole problem:** (Preskill ’79) GUTs produce magnetic monopoles, cosmic evolution too slow to reduce density below current upper bounds.

- **Structure formation problem:** Non-inflationary evolution does not enhance primordial quantum fluctuations enough to account for fluctuations in CMB and today’s structure in universe.

All fine-tuning problems
Horizon Problem – Causal Structure

Observer today

Backward light cone

Singularity

\(z = \infty \)

\(z \approx z_{\text{rec}} \approx 1100 \)

\[
d s^2 = a^2(\eta)(-d\eta^2 + \gamma) = -dt^2 + a^2(t)\gamma, \quad z + 1 = a_0/a
\]

\[
\frac{l_{\text{univ}}}{l_{\text{LSS}}} = \frac{\int_0^{a_0} \frac{da'}{H(a')(a')^2}}{\int_0^{a_{\text{LSS}}} \frac{da'}{H(a')(a')^2}} = \frac{\int_0^{a_{\text{LSS}}} \frac{da'}{H(a')(a')^2}}{\int_0^{a_{\text{LSS}}} \frac{da'}{H(a')(a')^2}}. \quad \text{for MD } a \sim t^{2/3}, \ H \sim a^{-3/2}, \ \text{for RD } a \sim t^{1/2}, \ H \sim a^{-2},
\]

hence largest contribution from MD \(\Rightarrow \left(\frac{l_{\text{univ}}}{l_{\text{LSS}}} \right)^2 \approx \left(\frac{\sqrt{a_0}}{\sqrt{a_{\text{LSS}}}} \right)^2 = 1 + z_{\text{LSS}} \approx 1100. \) Fine-tuning problem.
Problem: Inflation only accurate down to $t = t_{\text{pl}} \Rightarrow$ horizon problem strikes back at some $t \gg t_0$
Time and Length Scales

Time

- In general evolution time \neq coordinate time. Consider e.g. Hamiltonian constraint in Canonical QG $\hat{H}\lvert\Psi\rangle = 0$ (Wheeler-deWitt) \rightarrow no explicit time evolution, but statics? No! Relative evolution.

- A priori: entropic time \neq coordinate time \neq relative time

Length Scales

- Consider standard cosmology. QG effects become important when $T \approx T_{pl}$. Then fundamental length scale l_{pl} defined with respect to physical distance $\Delta s \sim l_{pl}$, but often $\Delta x \sim l_{pl}$. But $\Delta x \sim a^{-1}\Delta s$, hence $\Delta x \sim a l_{pl}$?

- Extra dimensions: $l_{pl}^{(4)} = \frac{(l_{pl}^{(D)})^{D/2-1}}{\sqrt{V}}$ (Arkani-Hamed, Dimopoulos, Dvali '98) \rightarrow Planck length might be smaller than it appears.

- Planck’s constant might really be operator (Heckmann, Verlinde '15) $[\hat{x}, \hat{p}] \sim \hat{h}$. Define Planck length $\hat{l}_{pl}^2 = \hat{h}G_N/c^3$ such that length scales \in spec(\hat{l})?

- Planck mass might be even variable in space and time: variable gravity (Wetterich '14) $M_{pl}^{eff} \sim \chi(t, \vec{x})$ cosmon.
Fuzzy Singularity
Horizon Problem – Initial Time Uncertainty

\[\Delta x(t<<1) = \frac{\Delta t}{|t'(x)|} \bigg|_{t=0} = \infty \]

In radiation domination: Small time uncertainty \(\Rightarrow \) infinite space uncertainty
Fuzzy Singularity I – Heuristic Idea

Imposing small time uncertainty at early times leads to fuzzy light cones

“dusty” singularity and “stacked” multiverses. For horizon problem no need of inflation. Problem: How to “average”?
Space-time commutation relations

\[
[\hat{t}, \hat{x}^j] = i\lambda \hat{\alpha}^j(t, \vec{r}) \\
[\hat{\alpha}^j, \hat{x}^k] = [\hat{\alpha}^j, \hat{t}] = 0
\]

with \(\hat{\alpha} \) vector-valued Hermitian operator, that transforms covariantly and is central in the algebra.

Uncertainty: \(\Delta x^i \Delta t \geq \frac{1}{2} \alpha^j(t, \vec{r}) \) with \(\alpha^j := |\langle \hat{\alpha}^j \rangle| \). Lightlike curve satisfies \(|\dot{\gamma}_s|(t) = \frac{1}{|a(t)|} \) in comoving coordinates. Impose \(\Delta t \) at some early time → geodesic inherits uncertainty

\[
\Delta \gamma_s(t, \vec{r}) = \frac{\Delta t}{a(t)} \geq \frac{1}{2} \frac{\alpha^j(t, \vec{r})}{|a|} \frac{1}{\Delta x}. \quad \text{If } \Delta x = \Delta \gamma_s \Rightarrow
\]

\[\Delta x^i \geq \sqrt{\frac{\lambda \alpha^j}{2|a|}} \quad \alpha^j \text{ slowly varying} \quad \infty(t \to 0)\]

\textbf{Note:} Doplicher, Morsella, Pinamonti '13: Related idea. Using DFR-model, showed that 'localization region' diverges for \(t \to 0 \).
How to measure Δt?

Deferred Measurement Principle

In a quantum circuit measurements and operations may be interchanged. \Rightarrow Measurement may be shifted to the end.

- **MEASUREMENT:** Positive operator valued measure (POVM): $\{\hat{E}_i\}$ self-adjoint operators with $\sum_i \hat{E}_i = \hat{1}$. Writing $\hat{\rho} = \sum_i \hat{E}_i\hat{\rho} \rightarrow$ measurement $\hat{\rho} \mapsto \hat{E}_i\hat{\rho}$ with probability $P_i = \text{Tr}(\hat{E}_i\hat{\rho})$.

- **OPERATIONS/QUANTUM CHANNEL:** Completely positive maps between density matrices. In canonical Kraus form: $\hat{\rho} \mapsto \hat{\rho}' = \sum_{i=1}^{r} \hat{A}_i\hat{\rho}\hat{A}_i^\dagger$ with $\sum_{i=1}^{r} \hat{A}_i^\dagger\hat{A}_i = \hat{1}$ and $\text{Tr}(\hat{A}_i^\dagger\hat{A}_j) = d_i\delta_{ij}$, $\sum_{i=1}^{r} d_i = \text{dim}(\mathcal{H})$ with r the Kraus rank.

- Most general temporal evolution given by Lindblad equation (like above plus two additional terms)

\Rightarrow Strategy: Follow photon with energy uncertainty (induced by time uncertainty), then initial time uncertainty should be detectable much later (e.g. on LSS).
Methods for Investigating Possible Signatures in CMB
• Relic black body radiation from LSS at about $z \approx 1100$ shortly after recombination
• Small anisotropies depict energy density fluctuations from primordial quantum fluctuations
• Observation on celestial sphere: \[\frac{\delta T}{T_0} = \sum_{l=1}^{\infty} \sum_{m=-l}^{l} a_{lm} Y_{lm} \] with $T_0 \approx 2.7$ K and $\frac{\delta T}{T_0} \sim 10^{-5} - 10^{-4}$.
• Question: Is δT Gaussian and isotropic random field? Isotropy: (weak/statistical) cosmological principle. Gaussianity: e.g. inflation.

(1) What are QS signatures in CMB? (2) Are they present in the data?
Multipole vectors

Fixed multipole: \(\{ a_{lm} \} \overset{1:1}{\leftrightarrow} \{ \varphi(l,i) \in \mathbb{R}P^2 \} \) depicted as \(l \) unit vectors in one hemisphere. Isotropic and Gaussian temperature fluctuations \(\Rightarrow \) MPVs feel repulsion. not uniformly distributed.

(Pinkwart, Schwarz; in prep)

\[
S(l) = \frac{1}{l} \sum_{i=1}^{l} |\varphi(l,i) \cdot \vec{D}|, \; \vec{D} \text{ cosmic dipole. (Anti-)correlation on large angular scales } \rightarrow \text{ nature of dipole not fully understood or other effects?}
\]
Strategy: pure states yield vanishing von Neumann entropy \rightarrow construct mixed density matrix such that entropy is rotationally invariant.

\[S_{\text{ang}}(l) = -\text{Tr}(\rho_{\text{ang}}(l) \ln(\rho_{\text{ang}}(l))) \] with $\rho_{\text{ang}}(l) = \frac{1}{l(l+1)} \sum_{i=1}^{3} L_i \rho(l) L_i$, where $\rho(l) = |\Psi_l\rangle\langle\Psi_l|$ and $|\Psi_l\rangle = \sum_{m=-l}^{l} \tilde{a}_{lm} |l, m\rangle$, $\tilde{a}_{lm} = \frac{a_{lm}}{\sum_{n=-l}^{l} a_{ln}}$.

Minimal for Bloch coherent states (?) ; maximal for maximally mixed ρ_{ang}.

(Pinkwart, Schupp; in prep)
Conclusion

— Phenomenological description of QG \rightarrow Quantum geometry
— Quantizing spacetime \Rightarrow Functions on manifold \rightarrow Noncommutative algebra
— Small initial time uncertainty causally connects all initial points
— Possible tools for investigating signatures in CMB: MPVs and pseudo-entropies