I-C universal relation of the scalarized rotating neutron stars with realistic equations of state

Zahra Altaha Motahar Jose Luis Blázquez-Salcedo Burkhard Kleihaus Jutta Kunz

CvO University of Oldenburg

RTG Spring Workshop, Jacobs University Bremen, 19.-20. February 2018

Einstein can not explain everything?!

Einstein can not explain everything?!

Modifying Gravity?

Einstein can not explain everything?!

Modifying Gravity? Maybe!

E. Berti et al., "Testing General Relativity with Present and Future Astrophysical Observations", Class. Quant. Grav. 32, 243001 (2015).

Scalar-Tensor Theories of gravity (STT)

Natural generalizations of General Relativity: include scalar field, as an additional mediator to the action besides the metric tensor mediator of GR.

Zahra Altaha Motahar, Jose Luis Blzquez-Salcedo, Burkhard Kleihaus, Jutta Kunz, Phys. Rev. D 96, 064046 (2017).

Why Neutron Stars?

so Dense and so Compact \downarrow an ideal laboratory for Testing Gravity in the strong field regime.

The gravitational action

Action in the physical Jordan frame

$$S = \frac{1}{16\pi G_*} \int d^4x \sqrt{-\tilde{g}} \left[F(\Phi) \tilde{\mathcal{R}} - Z(\Phi) \tilde{g}^{\mu\nu} \partial_\mu \Phi \partial_\nu \Phi - 2U(\Phi) \right] \\ + S_m \left[\Psi_m; \tilde{g}_{\mu\nu} \right]$$

where

$$\begin{split} \tilde{T}_{\mu\nu} &= (\tilde{\varepsilon} + \tilde{\rho}) \tilde{u}_{\mu} \tilde{u}_{\nu} + \tilde{\rho} \tilde{g}_{\mu\nu} \\ g_{\mu\nu} &= F(\Phi) \tilde{g}_{\mu\nu} \\ \left(\frac{d\varphi}{d\Phi}\right)^2 &= \frac{3}{4} \left(\frac{d\ln(F(\Phi))}{d\Phi}\right)^2 + \frac{Z(\Phi)}{2F(\Phi)} \\ \mathcal{A}(\varphi) &= F^{-1/2}(\Phi), \ 2V(\varphi) = U(\Phi)F^{-2}(\Phi) \end{split}$$

The gravitational action

Action in the physical Jordan frame

$$S = \frac{1}{16\pi G_*} \int d^4x \sqrt{-\tilde{g}} \left[F(\Phi) \tilde{\mathcal{R}} - Z(\Phi) \tilde{g}^{\mu\nu} \partial_\mu \Phi \partial_\nu \Phi - 2U(\Phi) \right] \\ + S_m \left[\Psi_m; \tilde{g}_{\mu\nu} \right]$$

where

$$\begin{split} \tilde{T}_{\mu\nu} &= (\tilde{\varepsilon} + \tilde{\rho})\tilde{u}_{\mu}\tilde{u}_{\nu} + \tilde{\rho}\tilde{g}_{\mu\nu} \\ g_{\mu\nu} &= F(\Phi)\tilde{g}_{\mu\nu} \\ \left(\frac{d\varphi}{d\Phi}\right)^2 &= \frac{3}{4}\left(\frac{d\ln(F(\Phi))}{d\Phi}\right)^2 + \frac{Z(\Phi)}{2F(\Phi)} \\ A(\varphi) &= F^{-1/2}(\Phi), \ 2V(\varphi) = U(\Phi)F^{-2}(\Phi) \end{split}$$

Action in the Einstein frame

$$\begin{split} S &= \frac{1}{16\pi G_*} \int d^4 x \sqrt{-g} \left[\mathcal{R} - 2g^{\mu\nu} \partial_\mu \varphi \partial_\nu \varphi - 4V(\varphi) \right] \\ &+ S_m [\Psi_m; \mathbf{A}^2(\varphi) g_{\mu\nu}] \end{split}$$

The field equations in the Einstein frame

Variations with respect the metric tensor lead to the Einstein-matter field equations:

$$egin{aligned} \mathcal{R}_{\mu
u} &-rac{1}{2}g_{\mu
u}\mathcal{R} = +2\partial_{\mu}arphi\partial_{
u}arphi - g_{\mu
u}g^{lphaeta}\partial_{lpha}arphi\partial_{eta}arphi + 8\pi\,T_{\mu
u}\
onumber\
aligned
aligned$$

The field equations in the Einstein frame

Variations with respect the metric tensor lead to the Einstein-matter field equations:

$$egin{aligned} \mathcal{R}_{\mu
u} &-rac{1}{2}g_{\mu
u}\mathcal{R} = +2\partial_{\mu}arphi\partial_{
u}arphi - g_{\mu
u}g^{lphaeta}\partial_{lpha}arphi\partial_{eta}arphi + 8\pi\,T_{\mu
u}\ &
abla^{\mu}
abla_{\mu}arphi = -4\pi\,k(arphi)\,T \end{aligned}$$

where

$$egin{aligned} k(arphi) &= rac{d\ln(A(arphi))}{darphi} \ T_{\mu
u} &\equiv A^2\, ilde{T}_{\mu
u} \end{aligned}$$

The coupling functions

•
$$A_1(\varphi) = e^{\frac{1}{2}\beta\varphi^2}$$

• $k_1(\varphi) = \beta\varphi$

The coupling functions

•
$$A_1(\varphi) = e^{\frac{1}{2}\beta\varphi^2}$$

• $k_1(\varphi) = \beta\varphi$
• $A_2(\varphi) = \frac{1}{\cosh(\sqrt{-\beta}\varphi)}$
• $k_2(\varphi) = -\sqrt{-\beta} \tanh(\sqrt{-\beta}\varphi)$

The coupling functions

•
$$A_1(\varphi) = e^{\frac{1}{2}\beta\varphi^2}$$

• $k_1(\varphi) = \beta\varphi$
• $A_2(\varphi) = \frac{1}{\cosh(\sqrt{-\beta\varphi})}$
• $k_2(\varphi) = -\sqrt{-\beta}\tanh(\sqrt{-\beta\varphi})$
• $\beta_1 = -4.5$

▶ $\beta_2 = -4.8$ (Note: It is already constrained by observation!)

Metric corresponding to a slowly rotating star

$$ds^{2} = -e^{f(r)}dt^{2} + \frac{1}{n(r)}dr^{2} + r^{2}d\theta^{2} + r^{2}\sin^{2}\theta(d\phi + \omega(r)dt)^{2}$$

ODEs

The Einstein field equations in the slow rotation approximation reduce to the following system of ODEs

$$\frac{dn}{dr} = -\frac{1}{r} \left[8\pi r^2 A^4(\varphi) \tilde{\varepsilon} + nr^2 \left(\frac{d\varphi}{dr}\right)^2 + n - 1 \right]$$
$$\frac{df}{dr} = \frac{1}{nr} \left[8\pi r^2 A^4(\varphi) \tilde{\rho} + nr^2 \left(\frac{d\varphi}{dr}\right)^2 - n + 1 \right]$$
$$\frac{d\tilde{\rho}}{dr} = -(\tilde{\varepsilon} + \tilde{\rho}) \left[\frac{4\pi r A^4(\varphi) \tilde{\rho}}{n} + \frac{r}{2} \left(\frac{d\varphi}{dr}\right)^2 + k(\varphi) \left(\frac{d\varphi}{dr}\right) - \frac{n - 1}{2nr} \right]$$

$$\frac{d^{2}\omega}{dr^{2}} = \frac{4\pi r A^{4}(\varphi)}{n} \left(\tilde{\varepsilon} + \tilde{p}\right) \left[\left(\frac{d\omega}{dr}\right) + \frac{4(\omega - \Omega)}{r} \right] + \left(\frac{d\omega}{dr}\right) \left[r \left(\frac{d\varphi}{dr}\right)^{2} - \frac{4}{r} \right]$$
$$\frac{d^{2}\varphi}{dr^{2}} = \frac{4\pi r A^{4}(\varphi)}{nr} \left[r \left(\frac{d\varphi}{dr}\right) (\tilde{\varepsilon} - \tilde{p}) + k(\varphi) (\tilde{\varepsilon} - 3\tilde{p}) \right] - \left(\frac{d\varphi}{dr}\right) \frac{(n+1)}{nr}$$

Expansion at the center

Expansion at the center of the star in terms of the radial coordinate:

$$m(r) = \frac{4}{3}\pi A_0^2 \tilde{\varepsilon}_0 r^3 + O(r^4)$$

$$f(r) = f_0 + \frac{4}{3}\pi A_0^2 (\tilde{\varepsilon}_0 + 3\tilde{p}_0)r^2 + O(r^3)$$

$$\tilde{p}(r) = \tilde{p}_0 - \frac{1}{6}\pi(\tilde{\varepsilon}_0 + \tilde{p}_0) \left[4A_0(\tilde{\varepsilon}_0 + 3\tilde{p}_0) + (A'_0)^2(\tilde{\varepsilon}_0 - 3\tilde{p}_0) \right] r^2 + O(r^3)$$

$$\omega(r) = \omega_0 - \frac{8}{5}\pi A_0^4(\Omega - \omega_0)(\tilde{\varepsilon}_0 + \tilde{p}_0)r^2 + O(r^3)$$

$$\varphi(r) = \varphi_0 + \frac{1}{3}\pi A_0 A_0' (\tilde{\varepsilon}_0 - 3\tilde{p}_0)r^2 + O(r^3)$$

Expansion at infinity

If we requiere the solution to be asymptotically flat, then close to infinity the functions satisfy the following behaviour:

$$m(r) = M - \frac{1}{2}\frac{\omega_A^2}{r} - \frac{1}{2}\frac{\omega_A^2 M}{r^2} + O(\frac{1}{r^3})$$

$$f(r) = -\frac{2M}{r} - \frac{2M^2}{r^2} - \frac{1}{3}\frac{M(M^2 - \omega_A^2)}{r^3} + O(\frac{1}{r^4})$$

$$\varphi(r) = \frac{\omega_A}{r} + \frac{M\omega_A}{r^2} + \frac{1}{6}\frac{\omega_A(8M^2 - \omega_A^2)}{r^3} + O(\frac{1}{r^3})$$

$$\omega(r) = \frac{2J}{r^3} + O(\frac{1}{r^5})$$

$$I = J/\Omega$$

EOS

In order to integrate the system we have to provide an equation of state in the form $\tilde{\varepsilon} = \tilde{\varepsilon}(\tilde{p})$.

Polytropic EOS: ε̃ = K ρ̃^Γ/Γ-1</sub> + ρ̃, p̃ = Kρ̃^Γ, with ρ̃ being the baryonic mass density.

In order to integrate the system we have to provide an equation of state in the form $\tilde{\varepsilon} = \tilde{\varepsilon}(\tilde{p})$.

- Polytropic EOS: ε̃ = K ^{ρ̃Γ}/_{Γ-1} + ρ̃, p̃ = Kρ̃^Γ, with ρ̃ being the baryonic mass density.
- Realistic EOS: Two EOSs containing just *nuclear matter*: SLy and APR4.

Five EOSs containing *nucleons+hyperons*: BHZBM, GNH3, H4 and WCS1-2.

Two EOSs for *pure quark matter*: WSPHS1 and 2.

Four EOSs containing *hybrid quark+nucleons*: ALF2-4, BS4 and WSPHS3.

Total Mass versus the physical Radius of the Neutron Stars

Scalar field charge ω_A versus the Compactness $C = M/R_s$ of the Neutron Star models for various EOSs

Scalar field charge versus the total Mass of the Neutron Stars, for various EOS.

Scalar field charge versus the $g_{tt}(0)$, for various EOSs.

Onset of scalarization β_{crit} vs Compactness fit function

Moment of inertia versus total Mass of the Neutron Stars

What is inside a Neutron Star? Which EOS?

What is inside a Neutron Star? Which EOS?

What is inside a Neutron Star? Which EOS?

15/20

Any Universal Relation?

What is inside a Neutron Star? Which EOS?

I don't know.

Any Universal Relation? Yes!

- Moment of inertia and compactness of neutron stars
- Multipole moments 3-Hair
- Oscillation frequencies

- Moment of inertia and compactness of neutron stars
- Multipole moments 3-Hair
- Oscillation frequencies

Daniela D. Doneva & George Pappas, "Universal Relations and Alternative Gravity Theories", (23 Sep 2017), arXiv:1709.08046v1.

Kent Yagi & Nicolas Yunes, (2013), arXiv:1302.4499 [gr-qc].

Figure: Moment of Inertia versus Compactness for different normalizations. In (a), the moment of inertia is scaled to MR_s^2 , while in (b) we scale it to M^3 .

QNMs of Neutron Stars in STT

Gravitational Waves: a new window into the universe

► Considering the effect of scalarization with an alternative coupling function A₂ = 1/cosh(√-βφ).

- ► Considering the effect of scalarization with an alternative coupling function A₂ = 1/cosh(√-βφ).
- Extending earlier investigations of scalarization for neutron star models with realistic EOSs by considering also the classes of hyperon and hybrid stars.

- ► Considering the effect of scalarization with an alternative coupling function A₂ = 1/cosh(√-βφ).
- Extending earlier investigations of scalarization for neutron star models with realistic EOSs by considering also the classes of hyperon and hybrid stars.
- The most striking universal feature found relates the gravitational potential at the center of the star, as embodied in g_{tt}(0), to the properties of the scalar field.

- Considering the effect of scalarization with an alternative coupling function A₂ = 1/cosh(√−βφ).
- Extending earlier investigations of scalarization for neutron star models with realistic EOSs by considering also the classes of hyperon and hybrid stars.
- The most striking universal feature found relates the gravitational potential at the center of the star, as embodied in g_{tt}(0), to the properties of the scalar field.
- Restricting to static and slowly rotating models, we have confirmed and extended the results on the universal *I-C* relations.

- ► Considering the effect of scalarization with an alternative coupling function A₂ = 1/cosh(√-βφ).
- Extending earlier investigations of scalarization for neutron star models with realistic EOSs by considering also the classes of hyperon and hybrid stars.
- The most striking universal feature found relates the gravitational potential at the center of the star, as embodied in g_{tt}(0), to the properties of the scalar field.
- Restricting to static and slowly rotating models, we have confirmed and extended the results on the universal *I-C* relations.

Further Studies

- ► Considering the effect of scalarization with an alternative coupling function A₂ = 1/cosh(√-βφ).
- Extending earlier investigations of scalarization for neutron star models with realistic EOSs by considering also the classes of hyperon and hybrid stars.
- The most striking universal feature found relates the gravitational potential at the center of the star, as embodied in g_{tt}(0), to the properties of the scalar field.
- Restricting to static and slowly rotating models, we have confirmed and extended the results on the universal *I-C* relations.

Further Studies

 Calculating the QNMs (Quasi Normal Modes) of our Neutron Stars models in STT (Scalar Tensor Theories).

- ► Considering the effect of scalarization with an alternative coupling function A₂ = 1/cosh(√-βφ).
- Extending earlier investigations of scalarization for neutron star models with realistic EOSs by considering also the classes of hyperon and hybrid stars.
- The most striking universal feature found relates the gravitational potential at the center of the star, as embodied in g_{tt}(0), to the properties of the scalar field.
- Restricting to static and slowly rotating models, we have confirmed and extended the results on the universal *I-C* relations.

Further Studies

- Calculating the QNMs (Quasi Normal Modes) of our Neutron Stars models in STT (Scalar Tensor Theories).
- Extending our work to the Magnetized Neutron Stars.

- Considering the effect of scalarization with an alternative coupling function A₂ = 1/ cosh(√−βφ).
- Extending earlier investigations of scalarization for neutron star models with realistic EOSs by considering also the classes of hyperon and hybrid stars.
- The most striking universal feature found relates the gravitational potential at the center of the star, as embodied in g_{tt}(0), to the properties of the scalar field.
- Restricting to static and slowly rotating models, we have confirmed and extended the results on the universal *I-C* relations.

Further Studies

- Calculating the QNMs (Quasi Normal Modes) of our Neutron Stars models in STT (Scalar Tensor Theories).
- Extending our work to the Magnetized Neutron Stars.
- Constructing compact star models for a broaden spectrum of alternative theories of gravity.