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Einstein can not explain everything?!

Modifying Gravity? Maybe!
E. Berti et al., ”Testing General Relativity with Present and Future
Astrophysical Observations”, Class. Quant. Grav. 32, 243001 (2015).
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Scalar-Tensor Theories of gravity (STT)

Natural generalizations of General Relativity:
include scalar field, as an additional mediator to the action

besides the metric tensor mediator of GR.

Zahra Altaha Motahar, Jose Luis Blzquez-Salcedo, Burkhard Kleihaus, Jutta

Kunz, Phys. Rev. D 96, 064046 (2017).



Why Neutron Stars?

so Dense and so Compact
↓

an ideal laboratory for Testing Gravity in the strong field regime.



The gravitational action

I Action in the physical Jordan frame

S = 1
16πG∗

∫
d4x
√
−g̃
[
F (Φ)R̃ − Z (Φ)g̃µν∂µΦ∂νΦ− 2U(Φ)

]
+Sm [Ψm; g̃µν ]

where

T̃µν = (ε̃+ p̃)ũµũν + p̃g̃µν

gµν = F (Φ)g̃µν(
dϕ

dΦ

)2

=
3

4

(
d ln(F (Φ))

dΦ

)2

+
Z (Φ)

2F (Φ)

A(ϕ) = F−1/2(Φ) , 2V (ϕ) = U(Φ)F−2(Φ)

I Action in the Einstein frame

S = 1
16πG∗

∫
d4x
√
−g [R− 2gµν∂µϕ∂νϕ− 4V (ϕ)]

+Sm[Ψm;A2(ϕ)gµν ]



The gravitational action

I Action in the physical Jordan frame

S = 1
16πG∗

∫
d4x
√
−g̃
[
F (Φ)R̃ − Z (Φ)g̃µν∂µΦ∂νΦ− 2U(Φ)

]
+Sm [Ψm; g̃µν ]

where

T̃µν = (ε̃+ p̃)ũµũν + p̃g̃µν
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The field equations in the Einstein frame

Variations with respect the metric tensor lead to the
Einstein-matter field equations:

Rµν −
1

2
gµνR = +2∂µϕ∂νϕ− gµνg

αβ∂αϕ∂βϕ+ 8πTµν

∇µ∇µϕ = −4πk(ϕ)T

where

k(ϕ) =
d ln(A(ϕ))

dϕ

Tµν ≡ A2T̃µν
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The coupling functions

I A1(ϕ) = e
1
2
βϕ2

I k1(ϕ) = βϕ

I A2(ϕ) = 1
cosh(

√
−βϕ)

I k2(ϕ) = −
√
−β tanh(

√
−βϕ)

I β1 = −4.5

I β2 = −4.8 (Note: It is already constrained by observation!)
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Metric corresponding to a slowly rotating star

ds2 = −ef (r)dt2 +
1

n(r)
dr2 + r2dθ2 + r2 sin2 θ(dφ+ ω(r)dt)2



ODEs

The Einstein field equations in the slow rotation approximation
reduce to the following system of ODEs

dn

dr
= −1

r

[
8πr2A4(ϕ)ε̃+ nr2

(
dϕ

dr

)2

+ n − 1

]

df

dr
=

1

nr

[
8πr2A4(ϕ)p̃ + nr2

(
dϕ

dr

)2

− n + 1

]

dp̃

dr
= −(ε̃+ p̃)

[
4πrA4(ϕ)p̃

n
+

r

2

(
dϕ

dr

)2

+ k(ϕ)

(
dϕ

dr

)
− n − 1

2nr

]



ODEs

d2ω
dr2 = 4πrA4(ϕ)

n (ε̃+ p̃)
[(

dω
dr

)
+ 4(ω−Ω)

r

]
+
(
dω
dr

) [
r
(
dϕ
dr

)2
− 4

r

]

d2ϕ
dr2 = 4πrA4(ϕ)

nr

[
r
(
dϕ
dr

)
(ε̃− p̃) + k(ϕ)(ε̃− 3p̃)

]
−
(
dϕ
dr

)
(n+1)
nr



Expansion at the center

Expansion at the center of the star in terms of the radial
coordinate:

m(r) =
4

3
πA2

0ε̃0r
3 + O(r4)

f (r) = f0 +
4

3
πA2

0(ε̃0 + 3p̃0)r2 + O(r3)

p̃(r) = p̃0−
1

6
π(ε̃0+p̃0)

[
4A0(ε̃0 + 3p̃0) + (A′0)2(ε̃0 − 3p̃0)

]
r2+O(r3)

ω(r) = ω0 −
8

5
πA4

0(Ω− ω0)(ε̃0 + p̃0)r2 + O(r3)

ϕ(r) = ϕ0 +
1

3
πA0A

′
0(ε̃0 − 3p̃0)r2 + O(r3)



Expansion at infinity

If we requiere the solution to be asymptotically flat, then close to
infinity the functions satisfy the following behaviour:

m(r) = M − 1

2

ω2
A

r
− 1

2

ω2
AM

r2
+ +O(

1

r3
)

f (r) = −2M

r
− 2M2

r2
− 1

3

M(M2 − ω2
A)

r3
+ O(

1

r4
)

ϕ(r) =
ωA

r
+

MωA

r2
+

1

6

ωA(8M2 − ω2
A)

r3
+ O(

1

r3
)

ω(r) =
2J

r3
+ O(

1

r5
)

I = J/Ω



EOS

In order to integrate the system we have to provide an equation of
state in the form ε̃ = ε̃(p̃).

I Polytropic EOS: ε̃ = K ρ̃Γ

Γ−1 + ρ̃, p̃ = K ρ̃Γ, with ρ̃ being the
baryonic mass density.

I Realistic EOS: Two EOSs containing just nuclear matter :
SLy and APR4.
Five EOSs containing nucleons+hyperons: BHZBM, GNH3,
H4 and WCS1-2.
Two EOSs for pure quark matter : WSPHS1 and 2.
Four EOSs containing hybrid quark+nucleons: ALF2-4, BS4
and WSPHS3.



EOS

In order to integrate the system we have to provide an equation of
state in the form ε̃ = ε̃(p̃).

I Polytropic EOS: ε̃ = K ρ̃Γ

Γ−1 + ρ̃, p̃ = K ρ̃Γ, with ρ̃ being the
baryonic mass density.

I Realistic EOS: Two EOSs containing just nuclear matter :
SLy and APR4.
Five EOSs containing nucleons+hyperons: BHZBM, GNH3,
H4 and WCS1-2.
Two EOSs for pure quark matter : WSPHS1 and 2.
Four EOSs containing hybrid quark+nucleons: ALF2-4, BS4
and WSPHS3.



Total Mass versus the physical Radius of the Neutron Stars
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Scalar field charge ωA versus the Compactness C = M/Rs

of the Neutron Star models for various EOSs
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Scalar field charge versus the total Mass of the Neutron
Stars, for various EOS.
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Scalar field charge versus the gtt(0), for various EOSs.
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Onset of scalarization βcrit vs Compactness fit function
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Moment of inertia versus total Mass of the Neutron Stars
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I Which models of gravity? General Relativity?

I What is inside a Neutron Star? Which EOS?

I Any Universal Relation? Yes!
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Universal Relations

I Moment of inertia and compactness of neutron stars

I Multipole moments 3-Hair

I Oscillation frequencies

Daniela D. Doneva & George Pappas, ”Universal Relations and
Alternative Gravity Theories”, (23 Sep 2017), arXiv:1709.08046v1.
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Universal Relations

Kent Yagi & Nicolas Yunes, (2013), arXiv:1302.4499 [gr-qc].



Universal I -C Relations
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Figure: Moment of Inertia versus Compactness for different
normalizations. In (a), the moment of inertia is scaled to MR2

s , while in
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QNMs of Neutron Stars in STT



Gravitational Waves: a new window into the universe



Summary
I Considering the effect of scalarization with an alternative

coupling function A2 = 1/ cosh(
√
−βϕ).

I Extending earlier investigations of scalarization for neutron
star models with realistic EOSs by considering also the classes
of hyperon and hybrid stars.

I The most striking universal feature found relates the
gravitational potential at the center of the star, as embodied
in gtt(0), to the properties of the scalar field.

I Restricting to static and slowly rotating models, we have
confirmed and extended the results on the universal I -C
relations.

Further Studies
I Calculating the QNMs (Quasi Normal Modes) of our Neutron

Stars models in STT (Scalar Tensor Theories).
I Extending our work to the Magnetized Neutron Stars.
I Constructing compact star models for a broaden spectrum of

alternative theories of gravity.
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