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Introduction
Boltzmann-Gibbs (BG) Statistical Mechanics

Statistical mechanics is one of the most important branches of
physics, born to provide theoretical foundation to the
phenomenologically constructed thermodynamics.

Figure: Ludwig Boltzmann and Josiah W. Gibbs
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Introduction
Boltzmann-Gibbs (BG) Statistical Mechanics

The most important quantity in BG Statistics is the entropy, using
the Shannon's formula:

Q

Spe = —kp Y _pilnp;; (1)
i=1

with the sum of the probabilities of each state is normalized,

Q
Zpi =1 (2)
i—1
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Introduction
Boltzmann-Gibbs (BG) Statistical Mechanics

The most important quantity in BG Statistics is the entropy, using
the Shannon's formula:
Q

Spe = —kp Y _pilnp;; (1)
i=1

with the sum of the probabilities of each state is normalized,

Q
Zpi =1 (2)
i—1

For the particular case where each microstate has the same
probability, p; = 1/Q2 V 4, the very familiar expression for the
microcanonical entropy is found,
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Introduction
Boltzmann-Gibbs (BG) Statistical Mechanics

» Microcanonical ensemble just requires that the system under
study is closed and isolated.

» The probability density of microstates for this ensemble is
constant.
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Introduction
Boltzmann-Gibbs (BG) Statistical Mechanics

» Microcanonical ensemble just requires that the system under
study is closed and isolated.

» The probability density of microstates for this ensemble is
constant.

Additional ensembles can be constructed adding constrictions, e.g.,
the canonical ensemble, for which all possible energies ¢; are
assumed to have a probability p;

Z €p; = <E> =U. (4)

%

» The system is in thermal equilibrium with its sorroundings.
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We could ask:

Why the need of a
different and more
general formalism for
Statistical Mechanics?



Features of Boltzmann-Gibbs Statistics
Features: Extensivity and Additivity

Before to answer this question, we review some of the features of
BG statistics.
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Features of Boltzmann-Gibbs Statistics
Features: Extensivity and Additivity

Before to answer this question, we review some of the features of
BG statistics.

» Entropy and other thermodynamic potentials are extensive
and additive functions.

1. Additivity: for the entropies of two independent systems A and
B,
SB(;(A + B) = SBg(A) + SBg(B>.

2. Extensivity: entropy is proportional to the size of the system,
Spa < N.

IA. Campa, T. Dauxois, S. Ruffo, Phys. Rep. 480 (2009) 57-159. g’
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Features of Boltzmann-Gibbs Statistics
Features: Extensivity and Additivity

Before to answer this question, we review some of the features of
BG statistics.

» Entropy and other thermodynamic potentials are extensive
and additive functions.

1. Additivity: for the entropies of two independent systems A and
B,

SBg(A + B) = SBg(A) + SB(;(B).
2. Extensivity: entropy is proportional to the size of the system,
Spa < N.
Additivity implies extensivity and non-extensivity implies
non-additivity, but not the reverse 1

IA. Campa, T. Dauxois, S. Ruffo, Phys. Rep. 480 (2009) 57-159. g’

7/30



Features of Boltzmann-Gibbs Statistics

More features of BG statistics: Concavity of entropy

Another feature required for systems is the concavity of entropy
SBa.

» Entropy must be a concave function of its parameters in
order to be thermodynamically stable.

very important feature of BG statistics is the ensemble
equivalence:
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Features of Boltzmann-Gibbs Statistics

More features of BG statistics: Concavity of entropy

Another feature required for systems is the concavity of entropy
SBa.

» Entropy must be a concave function of its parameters in
order to be thermodynamically stable.

A very important feature of BG statistics is the ensemble
equivalence:

» Thermodynamic information obtained from different statistical
ensembles is the same, up to small fluctuations.

» This allows to study systems using the most suitable ensemble,
depending on their physical conditions, e.g., controlled
pressure, fixed temperature, etc.
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Problems with BG statistics

These features of BG Statistical
Mechanics, are limited to a very
particular set of interaction
potentials: Additive
Interactions.



A classification for interactions

7’
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Long-range (Non-additive) interactions (LRI)

Definition
In the pairwise approximation, LRI can be defined as follows:

» Considering an interaction potential which decays with

distance as r—.
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Long-range (Non-additive) interactions (LRI)

Definition
In the pairwise approximation, LRI can be defined as follows:

» Considering an interaction potential which decays with
distance as .

» For a system in a d-dimensional space, energy per each particle

pair is,
R
e—/ pCddT—pCQd/ pld=D=lgy
) 1)

_ PO

SR L (5)

» The above integral diverges when [ < d.
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Types of Long-range interactions

Long range interactions

Interaction li/d ‘Comments
Large systems
Gravity 11/3 |Long Range
Coulomb 1 1/3 |Long Range with
Debye screening
Dipole 31 |Limit case
2D Hidrodynamics 00 |Logaritmic Interactions
Small systems
Atomic and molecular Clusters Range of the interaction
Bose—Einstein condensates is of the order of the size
of the system
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Long-range Interactions and the BG Statistics

The Gravitational Case
The gravitational interaction is an interesting case, even for LRI.

» Gravitational systems have the following features:
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Long-range Interactions and the BG Statistics

The Gravitational Case

The gravitational interaction is an interesting case, even for LRI.
» Gravitational systems have the following features:

1. Thermodynamic instability, due to the purely attractive nature
of gravity 2.

2. Ensemble inequivalence: Microcanonical specific heat can be
negative for these systems 3.

3. Non-additivity and no-extensivity: interaction quantities
between subsystems are not negligible E;,; - 0.

4. Thermodynamic limit is not well defined: The traditional
N — 00,V — 00, N/V = constant, does not holds up.

5. Non-concavity of entropy.

6. Ergodicity break: Not all accessible thermodynamic states are
connected by intermediate ones #.

2. Thirring, Z. Phys. 235 (1970) 339 e
3M. D'Agostino et al., Phys. Lett. B 473 (2000) 219-225. Nccie:%\%g,
“A. Campa, T. Dauxois, S. Ruffo, Phys. Rep. 480 (2009) 57-159.
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Tsallis Non-extensive (non-additive) Statistics

» Several generalizations for entropy were proposed, to deal (and
to try solve the several issues related) with:

S(A,B) # S(A) + S(B);

tituto de
Ciencias \

Nucleares

UNAM

14 /30

C. Tsallis, J. Stat. Phys., 52, 479 (1988).



Tsallis Non-extensive (non-additive) Statistics

» Several generalizations for entropy were proposed, to deal (and
to try solve the several issues related) with:

S(4,B) # S(A) + S(B);
» The most well known of these generalizations is the

q-Entropy or Tsallis entropy, proposed by C. Tsallis °, which
establish that:

Sq(A+ B) = S(4) + S4(B) + (1 = ¢)5,(A)S4(B) . (6)

where ¢ is a free parameter which measures the
non-extensivity.
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Tsallis Non-extensive (non-additive) Statistics

» Several generalizations for entropy were proposed, to deal (and
to try solve the several issues related) with:

S(A, B) # S(4) + S(B);

» The most well known of these generalizations is the
q-Entropy or Tsallis entropy, proposed by C. Tsallis °, which
establish that:

Sq(A+ B) = 54(A) + 5¢(B) + (1 = q)S54(A)Sy(B) . (6)
where ¢ is a free parameter which measures the
non-extensivity.

» Non-extensivity is achieved by modifying (or generalizing) the
definition of entropy:

Q (9] q
L=2i—1P
Sq=—kB E pilngp; = A (7)
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Tsallis Non-extensive (non-additive) Statistics

» The function In, is defined as:
zl=1 -1
l—gq
Recovers the usual natural logarithm in the limit ¢ — 1.

(8)

Ingz =

stituto de
Ciencias s

Nucleares

UNAM

15/30



Tsallis Non-extensive (non-additive) Statistics

» The function In, is defined as:
zl=1 -1
l—gq
Recovers the usual natural logarithm in the limit ¢ — 1.

Ingz =

(8)

» g-entropy satisfies some of the BG entropy properties, however
also generalizes other ones.

» Microcanonical g-Entropy satisfies the normalization condition,

Q
Zpi = 1. (9)
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Tsallis Non-extensive (non-additive) Statistics

» The function In, is defined as:
zl=1 -1
l—gq
Recovers the usual natural logarithm in the limit ¢ — 1.

(8)

Ingz =

» g-entropy satisfies some of the BG entropy properties, however
also generalizes other ones.

» Microcanonical g-Entropy satisfies the normalization condition,
Y,

Y opi=1 (9)
i=1

» Canonical g-entropy requires the following constriction for
energy:
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Tsallis Non-extensive (non-additive) Statistics
Modified themodynamic limit

Non-extensive statistics also requires a modification in the
thermodynamic limit!!
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Tsallis Non-extensive (non-additive) Statistics
Modified themodynamic limit

Non-extensive statistics also requires a modification in the
thermodynamic limit!!

» |Instead of the well known limit,
N — 0,V = 0o, and N/V = const. (11)

This new limit should be considered to take into account the
non-additivity, adding a weight factor N* to some variables as:

N* oc N17U4, (12)

» In the gravitational case d =3 and [ = 1, N* oc N2/3.
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Tsallis Non-extensive (non-additive) Statistics
Modified themodynamic limit

With the modified limit variables can be classified in:
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Tsallis Non-extensive (non-additive) Statistics
Modified themodynamic limit
With the modified limit variables can be classified in:

» Extensives as,

I S Vv ,
im —,— = const,
NV—=co N N
» Pseudo-extensives (energy type) as,
*

NI NN Const

» Pseudo-intensives as
™ P*
li — ,— = const.
Nooe N* 7 N*

(13)
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Tsallis Non-extensive (non-additive) Statistics

Other notions have to be generalized as well. Depending on the
ensemble, different quantities are obtained for Tsallis statistics and
its respective distribution functions.

tituto de
Ciencias \

Nucleares

UNAM

18/30



Tsallis Non-extensive (non-additive) Statistics

Other notions have to be generalized as well. Depending on the
ensemble, different quantities are obtained for Tsallis statistics and
its respective distribution functions.

» The Tsallis temperature is defined as

1 (95,)\7
ks B <8E>V,N ‘ (16)

» And the Tsallis pressure as

1y
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Tsallis Non-extensive (non-additive) Statistics

However, based on a generalized notion of equilibrium® 7, instead of

the intensive variables above, the true physical intensive quantities
for g-statistics are:

6S. Abe, et al, Physics Letters A 281, 126 (2001). UN/\M‘S’
"R. Toral, Physica A, 317, 209 (2003). 19/30



Tsallis Non-extensive (non-additive) Statistics

However, based on a generalized notion of equilibrium® 7, instead of

the intensive variables above, the true physical intensive quantities
for g-statistics are:
» Tempeature

. 1—gq 8Sq>1 1
™=|14—-=5 — = —, 18
( kp q) (8E V,N kBbBq 18)

. ™ 95,
P = T a—gmals, <6V>EN‘ (19)

» Pressure
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Tsallis Non-extensive (non-additive) Statistics

However, based on a generalized notion of equilibrium® 7, instead of

the intensive variables above, the true physical intensive quantities
for g-statistics are:
» Tempeature

. 1—gq 8Sq>1 1
™=|14—-=5 — = —, 18
( kp q) (8E V,N kBbBq 18)

. ™ 95,
P = T a—gmals, <aV>E,N‘ (19)

T he inverse physical temperature is defined as ,, and
proportionality between 5 and 3, is commonly referred to as ¢, i.e.,
l—gq

c=1+-—18,, (20)
kp |

6S. Abe, et al, Physics Letters A 281, 126 (2001).
"R. Toral, Physica A, 317, 209 (2003).

» Pressure
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The Newtonian Self-gravitating gas

Considering a non relativistic and isolated system of N point
particles interacting via a Newtonian gravitational potential

1 Qi > A
1 |ai —ay i~ al =

_ S 21
=l (21)

+1/A lai — q;] < A.

Where A is a short distance cut-off, which satisfies A < L, with L
is the size of the system.
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The Newtonian Self-gravitating gas

Considering a non relativistic and isolated system of N point
particles interacting via a Newtonian gravitational potential

1 Qi > A
1 |ai —ay i~ ol =

_ - 21
PR (21)

A fa - gl < A

Where A is a short distance cut-off, which satisfies A < L, with L
is the size of the system. The Hamiltonian of such a system is

N 2
_ NP e (as — ai])
H—T+U_;2m Gm*u (|Ja; — qg) ; (22)
The potential u(|q; — q;|) has been defined as

1
u(lai —qg)) = Y =l . (23) s
ey = aly £
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The self-gravitating gas in the Tsallis Statistics

The Canonical ensemble

Starting with the canonical ensemble, the partition function is:

1
Zq — W / dSNq d3Np equ (_Bq%(p7 q)) ) (24)
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The self-gravitating gas in the Tsallis Statistics

The Canonical ensemble

Starting with the canonical ensemble, the partition function is:

1
Zq — W / dSNq d3Np equ (_Bq%(p7 Q)) ’ (24)

» After performing some calculations, Z, can be written as,

7 VNF(%) 2mm 3N/2L' (25)
© = TNy \1-98,) o=

_2-— 3N
]{dt T e t/d?’Nre”qu(rirj');

introducing a dimensionless variable 7, and an effective
dimensionless potential u(-), which are:

2
N
= w, u(Jry —rj]), for 0 <rg < 1. (2@)3L




The self-gravitating gas in the Tsallis Statistics

The Canonical ensemble: The dilute regime

To obtain an explicit expression for the self-gravitating gas, a dilute
regime, which assumes low density is considered.

» Taylor expansion of the interaction potential can be carried
out, i.e., up to second order,

emr) 14 gt Sp2? (27)

2
2|

where n, = 7(%)](\717(1)77.
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The self-gravitating gas in the Tsallis Statistics

The Canonical ensemble: The dilute regime

To obtain an explicit expression for the self-gravitating gas, a dilute
regime, which assumes low density is considered.

» Taylor expansion of the interaction potential can be carried
out, i.e., up to second order,

emr) 14 gt Sp2? (27)

2
o1
where n, = 7(%)](\717(1)77.
» In this low density limit the interaction potential can be

written as a sum of identical two-body interactions,

u(lr; —x3)) = ’i’[(N—l)+(N—2)+...+1]
Iy Iro

(N — k). 28
Iry — 2 r2, Z ( )SL
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The self-gravitating gas in the Tsallis Statistics

The Canonical ensemble: The dilute regime

» In the limit N — oo,

N(N —1)

u(’ri - r.]‘) = 2 ‘rl — 1‘2\ :

(29)
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The self-gravitating gas in the Tsallis Statistics

The Canonical ensemble: The dilute regime

» In the limit N — oo,

N(N —1)

= ) 29
2‘1‘1—1‘2‘ ( )

u(|rs — r3)

» The quadratic term in (27) can be simplified in a similar
manner,
T
2|r1 — ra| lr1 —r2||r1 —r3]
N(N —1)(N —2)(N —-3)
4|I‘1—I‘2||I‘3—I‘4| '

(30)
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The self-gravitating gas in the Tsallis Statistics

The Canonical ensemble: The dilute regime

» In the limit N — oo,

N(N —1)

= ) 29
2‘1‘1—1‘2‘ ( )

u(|rs — r3)

» The quadratic term in (27) can be simplified in a similar

manner,

wls—xp = NON-D N oD -2)

Y 2lry —rgf>  |r1—r2||ry —r3
N(N —1)(N —2)(N —-3)

30
4|I‘1—I‘2||I‘3—I‘4| ( )

» Plugging all of these things into the coordinate integral,
enullmiri)) 1 ¢N?A 1 2N2B. (31)
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The self-gravitating gas in the Tsallis Statistics

The Canonical ensemble: The dilute regime

» where,
A - 77(12—NQ)b0 (1_
B _ 772(21]\7261)2 [lf)
20-3)

(

1

¥)
D6
() -3)

(32)

TN
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The self-gravitating gas in the Tsallis Statistics

The Canonical ensemble: The dilute regime

» Further we have defined the gravitational virial coefficients as

1
1
bo = / d3T1d3T2 _, (34)
0 Ir1 — 2
2 s 3 3 3 1 1
b5 = d°r1d°rod°r3d’ry , (35)
0 r1 — r2f [r3 — 14
Vs a3 1 1
bl :/ d T’ld 7’2d T3 s (36)
0 lry —ra| |r1 —rs|
1
1
by — / NNy L (37)
0 |r1 —ra|

» These coefficients are just numbers which change depending
on the symmetry of the box where the box is contained.
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The self-gravitating gas in the Tsallis Statistics

The Canonical ensemble: The dilute regime

With those approximations, the integral & over the auxiliary variable
t be can computed,

9
7 [ 2mm T’N/z VN I q)
Tl -9)8, NIRSN (2:3 + %)

2— 3N 2— 3N

(Fi+ %) | et (%)

XL ANT T B o
F(?ﬁ?) F(%ﬁr?)

1G rav
= (g ).Zég )

In the absence of gravitational interaction, n = 0 (and A = B = 0),
the result os the same than for the Tsallis canonical ideal gas.

Nﬁgﬁss:ézg;
®D. Prato, Physics Letters A 203, 165 (1995).
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The self-gravitating gas in the Tsallis Statistics

The Canonical ensemble: The dilute regime

The next step is to calculate the modified thermodynamic limit.
Considering N — oo,

.1 (1—q)b by bE
I glerer) o MEZDD0 4 2 h2 (2120
lim —InZ, o~ 5 n°(1—q) (2 2) (38)

N—oo

This expression allow to calculate relevant thermodynamic
quantities.
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The self-gravitating gas in the Tsallis Statistics

The Canonical ensemble: The dilute regime

The next step is to calculate the modified thermodynamic limit.
Considering N — oo,

. 1 (1—q)b b b2
(grav) ~, T~ 9)%0 202 (2L 20
lim In Zq ~ 9 +n°(1—-q) ( 9 5 ) (38)

N—oo

This expression allow to calculate relevant thermodynamic
quantities.

» The equation of state for pressure can be calculated with,

p* olnZ,
= I (39)
which is, 5
PV n
=1— — ~ Ipzlora) 40
NkpT* 3N on ( )‘S,
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The self-gravitating gas in the Tsallis Statistics

The Canonical ensemble: The dilute regime

» Substituting (38) into (40), allows us to compute the
thermodynamic limit of the equation of state.

PV onl-gb  n*(l-

NkpT* 6 3

Which exhibits a explicit dependence on the parameter q.

9 - 3) . ()

UNAM
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The self-gravitating gas in the Tsallis Statistics

The Canonical ensemble: The dilute regime

» Substituting (38) into (40), allows us to compute the
thermodynamic limit of the equation of state.
PV onl-gb  n*(l-
NkpT* 6 3
Which exhibits a explicit dependence on the parameter q.

» |t is also instructive to consider the specific heat capacity at
constant volume, defined in the Tsallis statistics as

=7 (5 ). #2)

Which in the diluted regime is,

9 - 3) . ()

(CV)Q 3 2 2 2
7 =5 - by —bj) - 43
o =g T (=) (b k) (43)
This result is always positive also in the presence of C;ennm;;g;
gravitational forces. Nuclsres
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Conclusions

The non-extensive Tsallis formalism has been applied to a
Newtonian self-gravitating gas.

» Reasonable and physically sound results were obtained from
the application of Tsallis statistics, achieving convergence of
important thermodynamic functions and state equations.
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Conclusions

The non-extensive Tsallis formalism has been applied to a
Newtonian self-gravitating gas.

» Reasonable and physically sound results were obtained from
the application of Tsallis statistics, achieving convergence of
important thermodynamic functions and state equations.

» Tsallis statistics has proved to be a viable tool for the
description of systems with long-range forces, but that its
application has to be carried out with care.
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Conclusions

The non-extensive Tsallis formalism has been applied to a
Newtonian self-gravitating gas.

» Reasonable and physically sound results were obtained from
the application of Tsallis statistics, achieving convergence of
important thermodynamic functions and state equations.

» Tsallis statistics has proved to be a viable tool for the
description of systems with long-range forces, but that its
application has to be carried out with care.

» In the hopes to find ensemble equivalence in this formalism,
the microcanonical ensemble was explored (not shown here);
however, it was only partially achieved, up to a factor of
(1 — q) in the state equation.
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Conclusions

» Another possible way to investigate the equivalence of
ensembles is to check whether the probability distribution
functions of microcanonical and canonical ensembles are
related via a Laplace transformation.
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Conclusions

» Another possible way to investigate the equivalence of
ensembles is to check whether the probability distribution
functions of microcanonical and canonical ensembles are
related via a Laplace transformation.

» The question of ensemble equivalence need more detailed
investigations, especially on the exact and correct formulation
of the microcanonical ensemble in Tsallis statistics.
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