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Introduction
Boltzmann-Gibbs (BG) Statistical Mechanics

Statistical mechanics is one of the most important branches of
physics, born to provide theoretical foundation to the
phenomenologically constructed thermodynamics.

Figure: Ludwig Boltzmann and Josiah W. Gibbs
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Introduction
Boltzmann-Gibbs (BG) Statistical Mechanics

The most important quantity in BG Statistics is the entropy, using
the Shannon’s formula:

SBG = −kB
Ω∑
i=1

pi ln pi; (1)

with the sum of the probabilities of each state is normalized,

Ω∑
i=1

pi = 1. (2)

For the particular case where each microstate has the same
probability, pi = 1/Ω ∀ i, the very familiar expression for the
microcanonical entropy is found,

SBG = kB ln Ω. (3)
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Introduction
Boltzmann-Gibbs (BG) Statistical Mechanics

I Microcanonical ensemble just requires that the system under
study is closed and isolated.

I The probability density of microstates for this ensemble is
constant.

Additional ensembles can be constructed adding constrictions, e.g.,
the canonical ensemble, for which all possible energies εi are
assumed to have a probability pi∑

i

εipi = 〈E〉 = U. (4)

I The system is in thermal equilibrium with its sorroundings.

5 / 30



Introduction
Boltzmann-Gibbs (BG) Statistical Mechanics

I Microcanonical ensemble just requires that the system under
study is closed and isolated.

I The probability density of microstates for this ensemble is
constant.

Additional ensembles can be constructed adding constrictions, e.g.,
the canonical ensemble, for which all possible energies εi are
assumed to have a probability pi∑

i

εipi = 〈E〉 = U. (4)

I The system is in thermal equilibrium with its sorroundings.

5 / 30



We could ask:
Why the need of a
different and more

general formalism for
Statistical Mechanics?

6 / 30



Features of Boltzmann-Gibbs Statistics
Features: Extensivity and Additivity

Before to answer this question, we review some of the features of
BG statistics.

I Entropy and other thermodynamic potentials are extensive
and additive functions.

1. Additivity: for the entropies of two independent systems A and
B,

SBG(A+B) = SBG(A) + SBG(B).

2. Extensivity: entropy is proportional to the size of the system,
SBG ∝ N .

Additivity implies extensivity and non-extensivity implies
non-additivity, but not the reverse 1.

1A. Campa, T. Dauxois, S. Ruffo, Phys. Rep. 480 (2009) 57–159.
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Features of Boltzmann-Gibbs Statistics
More features of BG statistics: Concavity of entropy

Another feature required for systems is the concavity of entropy
SBG.

I Entropy must be a concave function of its parameters in
order to be thermodynamically stable.

A

very important feature of BG statistics is the ensemble
equivalence:

I Thermodynamic information obtained from different statistical
ensembles is the same, up to small fluctuations.

I This allows to study systems using the most suitable ensemble,
depending on their physical conditions, e.g., controlled
pressure, fixed temperature, etc.
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Problems with BG statistics

These features of BG Statistical
Mechanics, are limited to a very

particular set of interaction
potentials: Additive

interactions.
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A classification for interactions
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Long-range (Non-additive) interactions (LRI)
Definition

In the pairwise approximation, LRI can be defined as follows:

I Considering an interaction potential which decays with
distance as r−l.

I For a system in a d-dimensional space, energy per each particle
pair is,

e =

∫ R

δ

ρC

rl
ddr = ρCΩd

∫ R

δ
r(d−1)−ldr

=
ρCΩd

d− l
[Rd−l − δd−l]; if l 6= d; (5)

I The above integral diverges when l ≤ d.
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Types of Long-range interactions
Long range interactions

Interaction l l/d Comments
Large systems

Gravity 1 1/3 Long Range
Coulomb 1 1/3 Long Range with

Debye screening
Dipole 3 1 Limit case

2D Hidrodynamics 0 0 Logaritmic Interactions
Small systems

Atomic and molecular Clusters Range of the interaction
Bose–Einstein condensates is of the order of the size

of the system

12 / 30



Long-range Interactions and the BG Statistics
The Gravitational Case

The gravitational interaction is an interesting case, even for LRI.
I Gravitational systems have the following features:

1. Thermodynamic instability, due to the purely attractive nature
of gravity 2.

2. Ensemble inequivalence: Microcanonical specific heat can be
negative for these systems 3.

3. Non-additivity and no-extensivity: interaction quantities
between subsystems are not negligible Eint 9 0.

4. Thermodynamic limit is not well defined: The traditional
N →∞, V →∞, N/V = constant, does not holds up.

5. Non-concavity of entropy.
6. Ergodicity break: Not all accessible thermodynamic states are

connected by intermediate ones 4.

2W. Thirring, Z. Phys. 235 (1970) 339
3M. D’Agostino et al., Phys. Lett. B 473 (2000) 219–225.
4A. Campa, T. Dauxois, S. Ruffo, Phys. Rep. 480 (2009) 57–159.
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Tsallis Non-extensive (non-additive) Statistics

I Several generalizations for entropy were proposed, to deal (and
to try solve the several issues related) with:

S(A,B) 6= S(A) + S(B);

I The most well known of these generalizations is the
q-Entropy or Tsallis entropy, proposed by C. Tsallis 5, which
establish that:

Sq(A+B) = Sq(A) + Sq(B) + (1− q)Sq(A)Sq(B) . (6)

where q is a free parameter which measures the
non-extensivity.

I Non-extensivity is achieved by modifying (or generalizing) the
definition of entropy:

Sq = −kB
Ω∑
i=1

pqi lnq pi =
1−

∑Ω
i=1 p

q
i

1− q
. (7)

5C. Tsallis, J. Stat. Phys., 52, 479 (1988).
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Tsallis Non-extensive (non-additive) Statistics

I The function lnq is defined as:

lnq x =
x1−q − 1

1− q
. (8)

Recovers the usual natural logarithm in the limit q → 1.

I q-entropy satisfies some of the BG entropy properties, however
also generalizes other ones.

I Microcanonical q-Entropy satisfies the normalization condition,
Ω∑
i=1

pi = 1. (9)

I Canonical q-entropy requires the following constriction for
energy:

〈E〉q =

∑Ω
i=1 p

q
i εi∑Ω

j=1 p
q
j

= Uq. (10)
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Tsallis Non-extensive (non-additive) Statistics
Modified themodynamic limit

Non-extensive statistics also requires a modification in the
thermodynamic limit!!

I Instead of the well known limit,

N →∞ , V →∞ , and N/V = const. (11)

This new limit should be considered to take into account the
non-additivity, adding a weight factor N∗ to some variables as:

N∗ ∝ N1−l/d. (12)

I In the gravitational case d = 3 and l = 1, N∗ ∝ N2/3.
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Tsallis Non-extensive (non-additive) Statistics
Modified themodynamic limit

With the modified limit variables can be classified in:

I Extensives as,

lim
N,V→∞

S

N
,
V

N
= const , (13)

I Pseudo-extensives (energy type) as,

lim
N→∞

F ∗

N N∗
= const , (14)

I Pseudo-intensives as

lim
N→∞

T ∗

N∗
,
P ∗

N∗
= const . (15)
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Tsallis Non-extensive (non-additive) Statistics
Other notions have to be generalized as well. Depending on the
ensemble, different quantities are obtained for Tsallis statistics and
its respective distribution functions.

I The Tsallis temperature is defined as

Tq ≡
1

kBβ
=

(
∂Sq
∂E

)−1

V,N

. (16)

I And the Tsallis pressure as

Pq = Tq

(
∂Sq
∂V

)
E,N

. (17)
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Tsallis Non-extensive (non-additive) Statistics
However, based on a generalized notion of equilibrium6 7, instead of
the intensive variables above, the true physical intensive quantities
for q-statistics are:

I Tempeature

T ∗ =

(
1 +

1− q
kB

Sq

)(
∂Sq
∂E

)−1

V,N

=:
1

kBβq
, (18)

I Pressure

P ∗ =
T ∗

1 + [(1− q)/kB]Sq

(
∂Sq
∂V

)
E,N

. (19)

T he inverse physical temperature is defined as βq, and
proportionality between β and βq is commonly referred to as c, i.e.,

c = 1 +
1− q
kB

Sq , (20)

6S. Abe, et al, Physics Letters A 281, 126 (2001).
7R. Toral, Physica A, 317, 209 (2003). 19 / 30
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The Newtonian Self-gravitating gas
Considering a non relativistic and isolated system of N point
particles interacting via a Newtonian gravitational potential

− 1

|qi − qj|A
=


− 1

|qi−qj| |qi − qj| ≥ A

+1/A |qi − qj| ≤ A.
(21)

Where A is a short distance cut-off, which satisfies A� L, with L
is the size of the system.

The Hamiltonian of such a system is

H = T + U =
N∑
i=1

p2
i

2m
−Gm2u (|qi − qj|) ; (22)

The potential u(|qi − qj|) has been defined as

u(|qi − qj|) =
∑

1≤i<j≤N

1

|qi − qj|A
. (23)
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The self-gravitating gas in the Tsallis Statistics
The Canonical ensemble

Starting with the canonical ensemble, the partition function is:

Zq =
1

N !h3N

∫
d3Nq d3Np expq (−βqH(p,q)) , (24)

I After performing some calculations, Zq can be written as,

Zq =
V NΓ

(
2−q
1−q

)
N !h3N

(
2πm

(1− q)βq

)3N/2 i

2π
(25)∮

C
dt(−t)−

2−q
1−q
− 3N

2 e−t
∫
d3Nr eηqu(|ri−rj|) ;

introducing a dimensionless variable η, and an effective
dimensionless potential u(·), which are:

η =
Gm2Nβq

L
, u (|ri − rj|) , for 0 < rk < 1. (26)
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The self-gravitating gas in the Tsallis Statistics
The Canonical ensemble: The dilute regime

To obtain an explicit expression for the self-gravitating gas, a dilute
regime, which assumes low density is considered.

I Taylor expansion of the interaction potential can be carried
out, i.e., up to second order,

eηqu(|ri−rj|) ≈ 1 + ηqu+
1

2!
η2
qu

2 . (27)

where ηq = (−t)(1−q)
N η.

I In this low density limit the interaction potential can be
written as a sum of identical two-body interactions,

u(|ri − rj|) =
1

|r1 − r2|
[(N − 1) + (N − 2) + . . .+ 1]

=
1

|r1 − r2|

N∑
k=1

(N − k) . (28)
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The self-gravitating gas in the Tsallis Statistics
The Canonical ensemble: The dilute regime

I In the limit N →∞,

u(|ri − rj|) =
N(N − 1)

2 |r1 − r2|
. (29)

I The quadratic term in (27) can be simplified in a similar
manner,

u(|ri − rj|))2 =
N(N − 1)

2 |r1 − r2|2
+
N(N − 1)(N − 2)

|r1 − r2| |r1 − r3|

+
N(N − 1)(N − 2)(N − 3)

4 |r1 − r2| |r3 − r4|
. (30)

I Plugging all of these things into the coordinate integral,

eηqu(|ri−rj|)) ≈ 1− tN2A+ t2N2B . (31)
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The self-gravitating gas in the Tsallis Statistics
The Canonical ensemble: The dilute regime

I where,

A =
η(1− q)b0

2N

(
1− 1

N

)
, (32)

B =
η2(1− q)2

2N2

[
b20
4

(
1− 1

N

)(
1− 2

N

)(
1− 3

N

)

+
b2

2N2

(
1− 1

N

)
+
b1
N

(
1− 1

N

)(
1− 2

N

)]
,(33)
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I Further we have defined the gravitational virial coefficients as

b0 =

∫ 1

0
d3r1d

3r2
1

|r1 − r2|
, (34)

b20 =

∫ 1

0
d3r1d

3r2d
3r3d

3r4
1

|r1 − r2|
1

|r3 − r4|
, (35)

b1 =

∫ 1

0
d3r1d

3r2d
3r3

1

|r1 − r2|
1

|r1 − r3|
, (36)

b2 =

∫ 1

0
d3Nr1d

3Nr2
1

|r1 − r2|2
. (37)

I These coefficients are just numbers which change depending
on the symmetry of the box where the box is contained.
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With those approximations, the integral 8 over the auxiliary variable
t be can computed,

Zq ≈
[

2πm

(1− q)βq

]3N/2 V N

N !h3N

Γ
(

2−q
1−q

)
Γ
(

2−q
1−q + 3N

2

)

×

1 +AN2
Γ
(

2−q
1−q + 3N

2

)
Γ
(

1
1−q + 3N

2

) +BN2
Γ
(

2−q
1−q + 3N

2

)
Γ
(

q
1−q + 3N

2

)


= Z(IG)
q · Z(grav)

q

In the absence of gravitational interaction, η = 0 (and A = B = 0),
the result os the same than for the Tsallis canonical ideal gas.

8D. Prato, Physics Letters A 203, 165 (1995).
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The next step is to calculate the modified thermodynamic limit.
Considering N →∞,

lim
N→∞

1

N
lnZ(grav)

q ' η(1− q)b0
2

+ η2(1− q)2

(
b1
2
− b20

2

)
(38)

This expression allow to calculate relevant thermodynamic
quantities.

I The equation of state for pressure can be calculated with,

P ∗

kBT ∗
=

(
∂ lnZq
∂V

)
T ∗

, (39)

which is,
P ∗V

NkBT ∗
= 1− η

3N

∂

∂η
lnZ(grav)

q . (40)
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The Canonical ensemble: The dilute regime

I Substituting (38) into (40), allows us to compute the
thermodynamic limit of the equation of state.

P ∗V

NkBT ∗
' 1− η(1− q)b0

6
− η2(1− q)2

3

(
b1 − b20

)
. (41)

Which exhibits a explicit dependence on the parameter q.

I It is also instructive to consider the specific heat capacity at
constant volume, defined in the Tsallis statistics as

(cV )q = −T
∗

N

(
∂2F ∗

∂T ∗

)
V

. (42)

Which in the diluted regime is,
(cV )q
kB

' 3

2
+ η2(1− q)2

(
b1 − b20

)
. (43)

This result is always positive also in the presence of
gravitational forces.
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Conclusions
The non-extensive Tsallis formalism has been applied to a
Newtonian self-gravitating gas.

I Reasonable and physically sound results were obtained from
the application of Tsallis statistics, achieving convergence of
important thermodynamic functions and state equations.

I Tsallis statistics has proved to be a viable tool for the
description of systems with long-range forces, but that its
application has to be carried out with care.

I In the hopes to find ensemble equivalence in this formalism,
the microcanonical ensemble was explored (not shown here);
however, it was only partially achieved, up to a factor of
(1− q) in the state equation.
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Conclusions

I Another possible way to investigate the equivalence of
ensembles is to check whether the probability distribution
functions of microcanonical and canonical ensembles are
related via a Laplace transformation.

I The question of ensemble equivalence need more detailed
investigations, especially on the exact and correct formulation
of the microcanonical ensemble in Tsallis statistics.
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