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Abstract

The scalar fields of supersymmetric models are coordinates of a geometric space. We propose

a formulation of supersymmetry that is covariant with respect to reparametrizations of this target

space. Employing chiral multiplets as an example, we introduce modified supersymmetry variations

and redefined auxiliary fields that transform covariantly under reparametrizations. The resulting

action and transformation laws are manifestly covariant and highlight the geometric structure of

the supersymmetric theory. The covariant methods are developed first for general theories (not

necessarily supersymmetric) whose scalar fields are coordinates of a Riemannian target space.
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1 Introduction

This is the first of two related papers that describe a new covariant formulation of super-
symmetry and supergravity. The multiplets of many supersymmetric theories include scalar
fields that span a scalar manifold. Supersymmetry imposes geometric constraints on these
manifolds; for example, in N = 1, D = 4 supersymmetry, the scalars zα of chiral multi-
plets are local coordinates of a Kähler target space [1]. The new formulation brings out
the geometric nature of such theories. This means that all quantities we deal with and
their symmetry variations are covariant under reparametrizations of the target space. For
the Kähler manifolds we consider holomorphic coordinate transformations z′α(z). This can
be extended to covariance under other target space symmetries in other applications. Our
formulation makes use of both covariant derivatives, and of ‘covariant symmetry transfor-
mations’ both for supersymmetry and other symmetries such as isometries. Moreover, novel
curvature terms appear in several places.

While this geometric framework is quite general, we illustrate it explicitly for the case of
N = 1 supersymmetry with chiral multiplets zα, χα, Fα, consisting of complex scalar fields,
chiral spinors and auxiliary fields. We do not solve the Fα field equations until interactions
are further specified. This allows the inclusion of constrained chiral multiplets (some early
references are [2–10]), which are very useful in applications of supergravity to inflationary
cosmology [11–15].

In this first paper we illustrate our covariant methods on models with global symmetry.
Our methods are component analogues of the superspace formulations [16,17], which include
covariance under coordinate transformations of the target space. Though many ingredients
of our work apply to N = 2 theories as well,1 we treat only N = 1 supersymmetry. Thus we

1The scalars of N = 2, D = 4 hypermultiplets parametrize a hyper-Kähler manifold, and the scalars of
vector multiplets determine a rigid special Kähler manifold. See [18–20].
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give an off-shell geometric treatment of the N = 1 nonlinear σ-model with general Kähler
metric and superpotential. Conventional interactions with gauge multiplets can be included,
but we omit them because special issues associated with target space geometry do not arise.
In addition to super-Poincaré, one can also recast superconformal theories in the proposed
geometric formulation. We will demonstrate in a forthcoming publication [21] that this allows
us to obtain the action and supersymmetry transformations of the fields in the Poincaré
supergravity theory in a straightforward way from those in the parent superconformal theory.

In Section 2 we develop the geometric formalism at a more general level, independent of
supersymmetry or any specific action. We define covariant concepts and obtain results for
covariant symmetry transformations. The geometric ideas are extended to chiral multiplets
in Section 3, which includes covariant supersymmetry transformations of the physical and
auxiliary fields and the manifestly invariant action.

We hope that the presentation of our ideas in the simpler context of global supersymmetry
makes them more accessible to readers and motivates them to read [21] where, as we announce
in Sec. 4, the application to the superconformal formalism and then to the physical fields of
N = 1 Poincaré supergravity is given.

2 Geometrization of transformations

2.1 Scalar fields as coordinate maps

In this subsection we discuss fields that are functions on a Riemannian manifold M , pulled
back to spacetime by the coordinate map φi(xµ) from spacetime into M . These include
scalar and vector fields, S(φ) and V i(φ). We define the action of coordinate transformations
φi → φ′i(φ) on these fields and their derivatives. We also consider the effects of spacetime
symmetries and Killing symmetries that generate isometries of M . We denote infinitesimal
symmetries generically by δφi. The transformations they induce on vectors, called δV i,
do not transform as vectors under coordinate transformations. We then propose modified
variations, δ̂V i, that do transform covariantly. We also define covariant spacetime derivatives
∇µV

i and discuss their properties. This material may be familiar to readers, but we present
it to set the stage for its extension to the fields of chiral multiplets in Section 3 and the
superconformal formulation of supergravity in [21].

Scalar fields correspond to coordinate charts of a manifold and we must allow coordinate
reparametrizations, i.e.

φi → φ′i(φ) . (2.1)

We would like to formulate the theory in terms of quantities that take the same form for
all choices of coordinates. This requires all quantities to transform covariantly under (2.1).
Thus any scalar quantity S(φ) should transform as a scalar, while V i(φ) should transform
as a vector, viz.

S(φ)→ S ′(φ′(φ)) = S(φ) , V i(φ)→ V ′i(φ′(φ)) =
∂φ′i

∂φj
V j(φ) . (2.2)
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Two examples are the scalar gij∂µφ
i∂νφ

j and the vector ∂µφ
i, where gij(φ) is the metric on

M , and ∂µ indicates a spacetime derivative.

We now consider symmetries. Our main interest will be supersymmetry, but the same
considerations apply to spacetime and Killing symmetries. Coordinate covariance must be
maintained under any symmetry that the theory might have, and this requires a careful
definition of the action of that symmetry. The symmetry transformations δφi and δφ′i of
coordinate scalars related by the diffeomorphism (2.1) must satisfy

δφ′i =
∂φ′i

∂φj
δφj , (2.3)

By variation of the first equation in (2.2), one finds that the effect of the symmetry on any
scalar quantity is

δS ′(φ′) = ∂iS
′(φ′) δφ′i = ∂iS

′(φ′)
∂φ′i

∂φj
δφj = ∂jS(φ) δφj = δS(φ) . (2.4)

This shows that the symmetry variation of any scalar transforms as a scalar under diffeo-
morphisms.

Varying the second equation of (2.2), we find (and write in slightly less detail)

δV ′i =
∂φ′i

∂φj
δV j +

∂2φ′i

∂φj∂φk
V j δφk . (2.5)

The second term spoils the desired vectorial property. However, its structure resembles the
transformation law of a connection. This suggests that a covariant transformation can be
defined using the Christoffel connection as follows (see [22], [23, App.14B])

δ̂V i ≡ δV i + ΓijkV
j δφk , (2.6)

for any symmetry operation. Indeed, this definition satisfies the vectorial transformation
property

δ̂V ′i =
∂φ′i

∂φj
δ̂V j . (2.7)

Applying (2.6) to the spacetime translation symmetry δφj = ξµ∂µφ
j, we find the covariant

derivative of a vector quantity V i, namely

∇µV
i ≡ ∂µV

i + ΓijkV
j∂µφ

k . (2.8)

The covariant derivative is thus a special case of a covariant symmetry transformation.

For functions that only depend on the coordinate scalars (and not their spacetime deriva-
tives, or on other fields), there is a simple relation between these covariant operations, viz.

∇µ = (∂µφ
j)∇j , δ̂ = (δφj)∇j on functions of φi . (2.9)

Note that ∇j is the familiar covariant derivative on the target space M .
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The considerations above can be generalized to scalars, covectors and tensors in a natural
fashion. For scalars, there is no connection term needed and hence no difference between δ
and δ̂. If an action is constructed as a scalar from vectors and tensors, then invariance under
a symmetry operation is equivalent to invariance under the covariant transformations:

δL = δ̂L = 0 . (2.10)

As an example of a tensor, consider the metric gij(φ) of which Γijk are the Christoffel symbols.
It follows from (2.9) that its covariant transformation under any symmetry vanishes,

δ̂gij = (δφk)∇kgij = 0 . (2.11)

Simple observations, such as (2.10-2.11) will have great practical value in [21].

Although the coordinate scalars have a vector index, they do not transform as vectors
as (2.1) shows. However, spacetime derivatives of coordinate scalars are vectors. We define

δ̂∂µφ
i ≡ δ∂µφ

i + Γijk∂µφ
jδφk = ∇µδφ

i . (2.12)

The final equality follows because ordinary derivatives and transformations commute by
definition: δ∂µ = ∂µδ, and it defines a covariant derivative because δφi transforms as a
vector as shown by (2.3).

If δφi is only a function of the scalars, we may use the first of (2.9) and write

δ̂(∂µφ
i) = ∇µ(δφi) = (∂µφ

j)∇j(δφ
i) . (2.13)

Note, however, that the second equation of (2.9) cannot be applied to ∂µφ
i, since it is not

just a function of scalars. We will consider more general vectors that are not just functions
of scalars in Sec. 2.2.

Example. As a simple example, consider the kinetic Lagrangian of scalars φi:

Lφ = −1
2
gij∂µφ

i∂µφj , (2.14)

This is form invariant under any diffeomorphism, which means that

Lφ = −1
2
g′ij∂µφ

′i∂µφ′j , (2.15)

in which we have used the standard tensor transformation property of gij and the fact that
spacetime derivatives of coordinate scalars transform as vectors.

Diffeomorphisms are usually not symmetries, but those generated by Killing vectors are
exceptions to this rule. We consider the infinitesimal diffeomorphism

δφi = ki(φ) , such that ∇ikj +∇jki = 0 . (2.16)

First note that L is constructed from vectors and tensors, so that (2.10) is valid. Using
covariant transformations, we compute

δ̂Lφ = −gij∂µφi∇µk
j = −gij∂µφi∂µφk∇kk

j = −∂µφi∂µφk∇kki = 0 , (2.17)

where we have used (2.11) and (2.13). This proves invariance under the covariant trans-
formation provided that the Killing equation is satisfied. Readers should note that covariant
methods provide significant simplifications compared with conventional methods.

Finally we note that each Killing symmetry of the target space metric leads to a conserva-
tion law, since the current Jµ = gij(∂

µφi)kj is conserved when the Euler-Lagrange equations
for Lφ are satisfied.
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2.2 Inclusion of other fields

Many theories contain fields other than the coordinate scalars φi(x). Because our main
interest is supersymmetry we consider fermions, beginning with χi(x), namely spinors on
spacetime that transform as sections of the tangent bundle on a Riemannian target space
M . This means that under the reparametrizations φi → φ′i(φ):

χi → χ′i =
∂φ′i

∂φj
χj . (2.18)

Here, as further in this paper and in most treatments of supersymmetry, these fields χi and
φi are considered as independent such that {φi, χi} form a basis of the field space.

Symmetries that leave an action invariant take the form:

δφi(φ, χ) , δχi(φ, χ) . (2.19)

Consider how this changes under reparametrization:

δφ′i =
∂φ′i

∂φj
δφj , δχ′i =

∂φ′i

∂φj
δχj +

∂2φ′i

∂φj∂φk
χj δφk . (2.20)

We see that (δφ)i behaves as a vector, but (δχ)i does not. As in the previous subsection, we
define

δ̂χi ≡ δχi + Γijkχ
j δφk , (2.21)

for any symmetry operation. This transforms covariantly as the vectorial quantity (2.7).
Covariant derivatives (2.8) are defined in the same way. These definitions and properties
apply also to other vector functions such as ∂µφ

i.

Since the vectors χi are not functions of the coordinate scalar fields, these covariant
expressions for transformations and spacetime derivatives cannot be related to the covariant
target space derivative: the relations (2.9) are valid for quantities that depend only on the
coordinate scalars.

The conventional Ricci identity for covariant target-space derivatives:

[∇i,∇j]V
k = Rij

k
lV

l . (2.22)

is a fundamental relation in Riemannian geometry and may be viewed as the definition of
the curvature tensor. We now derive analogous relations for the commutators of covariant
spacetime derivatives and transformations.

We begin with [∇µ,∇ν ]V
k(x) for any vector function. In full detail the quantity ∇µ∇νV

k

contains many terms, but it can be simplified by omitting terms that serve only to covari-
antize the final result and hence are inessential. The essential terms are

∇µ∇νV
k = ∂µ∂νV

k + (∂µΓkij)(∂νφ
i)V j + . . . , (2.23)

where we omitted terms with explicit (non-differentiated) Christoffel symbols. Since the
Christoffel symbol itself only depends on scalar fields, we can apply the chain rule to its
space-time derivative. Therefore we find

[∇µ,∇ν ]V
k = 2∂[`Γ

k
i]j(∂µφ

`)(∂νφ
i)V j + . . . , (2.24)
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whose covariant form is
[∇µ,∇ν ]V

k = Rij
k
`(∂µφ

i)(∂νφ
j)V ` , (2.25)

valid for any vector V k.

There is a similar relation for the commutator of two covariant symmetry transforma-
tions. Suppose we have symmetries δ(ε)V i and their covariant forms δ̂(ε)V i from (2.21) with
symmetry parameters ε. Their commutators covariantize as (with δ1 = δ(ε1))

[δ1, δ2]V i = δ3V
i →

[
δ̂1, δ̂2

]
V i = δ̂3V

i +Rk`
i
jV

j(δ1φ
k)(δ2φ

`) , (2.26)

where δ3 is determined in terms of ε1 and ε2 by the structure functions of the symmetry.2

To prove this we use the shortcut of (2.23) and write

δ̂1δ̂2V
i = δ1δ2V

i + δ1ΓijkV
jδ2φ

k + . . . . (2.27)

We proceed as above to obtain (2.26).

There is an analogous relation for (δ̂∇µ−∇µδ̂)V
i. To prove it, realizing that a covariant

expression must arise at the end, we calculate

δ̂∇µV
i = δ∇µV

i + . . . = δ∂µV
i + δΓijkV

j∂µφ
k + . . . = δ∂µV

i + ∂`Γ
i
jk δφ

` V j∂µφ
k + . . . ,

∇µδ̂V
i = ∂µδ̂V

i + . . . = ∂µ
(
δV i + ΓijkV

jδφk
)

+ . . . = ∂µδV
i + ∂`Γ

i
jkV

j∂µφ
`δφk + . . . ,

(2.28)

After combining these two expressions, we find the covariant relation

δ̂∇µV
i = ∇µδ̂V

i +Rk`
i
jV

j(δφk)(∂µφ
`) . (2.29)

Example. As an extension of the previous example, consider the Lagrangian of Majorana
fermion fields χi, with Lagrangian

Lχ = −1
2
gijχ̄

iγµ∇µχ
j , ∇µχ

i ≡ ∂µχ
i + Γijk∂µφ

jχk . (2.30)

We consider a Killing symmetry acting on both bosons and fermions, for which

δφi = ki(φ) , δχi = χj∂jk
i . (2.31)

Again we will use covariant methods to demonstrate the invariance of the action. First we
use (2.21) to define a covariant Killing transformation of the fermions:

δ̂χi = χj∇jk
i . (2.32)

Then, (2.29) implies

δ̂∇µχ
i = ∇µ

(
χj∇jk

i
)

+Rk`
i
jχ

jkk(∂µφ
`)

= ∇jk
i∇µχ

j +
(
∇`∇jk

i +Rk`
i
jk
k
)
χj∂µφ

` . (2.33)

2For fermions of the N = 1 Kähler σ-model, an analogue of (2.26) was derived in [23, (14.118)].
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Using (2.16), the last part vanishes:

∇`∇jk
i +Rk`

i
jk
k = 1

2
[∇`, ∇j] k

i +∇(`∇j)k
i +Rk`

i
jk
k

= 1
2
R`j

i
kk

k −∇(`∇ikj) +Rk`
i
jk
k =

[
1
2
R`j

i
k −R(`

i
j)k +Rk`

i
j

]
kk = 0 , (2.34)

using the Bianchi identity. Hence, we have

δ̂∇µχ
i = ∇µχ

j∇jk
i , (2.35)

after which the invariance follows in the same way as in (2.17).

3 Global supersymmetry

In this section we present the covariant formulation of N = 1 globally supersymmetric
theories, restricting to chiral multiplets. The scalar geometry in this case is a Kähler mani-
fold, spanned by (anti-)holomorphic coordinates {Zα, Z̄ β̄}. Its metric is determined by the
Kähler potential K(Z, Z̄) and given by

gαβ̄ = Kαβ̄ ≡ ∂α∂β̄K(Z, Z̄) . (3.1)

The other fields in the multiplets are fermions3 χα, auxiliary fields Fα and their conjugates
χᾱ, F̄ ᾱ. The early stages of our discussion are similar to Appendix 14B of [23], but we
develop the covariant treatment more completely here.

3.1 Supersymmetry transformations

The conventional SUSY transformation rules of a chiral multiplet are

δZα =
1√
2
ε̄χα , δχα =

1√
2
PL
(
/∂Zα + Fα

)
ε , δFα =

1√
2
ε̄/∂χα . (3.2)

Only the δZα transformation is covariant under reparametrizations of the coordinate fields

Zα → Z ′α(Zβ) . (3.3)

This follows because both sides of the equation transform as tangent vectors, i.e.

δZα → δZ ′α =
∂Z ′α

∂Zβ
δZβ χα → χ′α =

∂Z ′α

∂Zβ
χβ . (3.4)

By contrast, δχα does not transform as a vector. This can be checked explicitly, as in
(2.20):

δχ′α = δ

(
∂Z ′α

∂Zβ
χβ
)

=
∂Z ′α

∂Zβ

1√
2
PL
(
/∂Zβ + F β

)
ε+ χβ

∂2Z ′α

∂Zβ∂Zγ

1√
2
ε̄χγ . (3.5)

3We use the notation that χα and χᾱ are left- and right-handed, respectively, i.e. χα = PLχ
α, χᾱ = PRχ

ᾱ.
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If we want to identify this with the transformed variables

δχ′α =
1√
2
PL(/∂Z ′α + F ′α)ε , (3.6)

we find (after a Fierz rearrangement) that Fα is not a vector. Rather it undergoes the
non-covariant transformation

F ′α =
∂Z ′α

∂Zb
F β − 1

2

∂2Z ′α

∂Zβ∂Zγ
(χ̄βχγ) . (3.7)

To repair the situation we proceed in two steps. First, as in (2.21), we must define the
covariant transformation

δ̂χα ≡ δχα + Γαβγχ
βδZγ . (3.8)

This leads to

δ̂χα =
1√
2
PL
(
/∂Zα + Fα

)
ε− 1

2
√

2
ΓαβγPLε (χ̄βχγ) . (3.9)

From the general properties of δ̂ it follows that the left hand side should be a coordinate
vector. Since ∂µZ

α is a vector, the other two terms together should transform as a vector.
We therefore define the covariant counterpart of the auxiliary fields as4

F̂α = Fα − 1

2
Γαβγ(χ̄

βχγ) . (3.10)

Note that F̂α is covariant, although Fα is not, because the transformation of the added
fermion bilinear cancels the non-covariant part of (3.7). Then the covariant form of the
transformation, consisting of manifestly covariant quantities, reads [23]

δ̂χα =
1√
2
PL

(
/∂Zα + F̂α

)
ε . (3.11)

Note that this requires covariantization of both the SUSY transformations as well as the
auxiliary fields.

The covariant version of the auxiliary field transformation rule must still be found. We
begin by calculating

δF̂α =
1√
2
ε̄

[
/∂χα − 1

2
(χδ̄∂δ̄Γ

α
βγ + χδ∂δΓ

α
βγ)(χ̄

βχγ) + Γαβγ(/∂Z
β − F β)χγ

]
. (3.12)

The ∂δ̄Γ
α
βγ is the Riemann tensor of the Kähler manifold. We then use

∂δΓ
α
βγ = ∂δ (gακ̄Kβγκ̄) = −ΓαδκΓ

κ
βγ + gακ̄Kδβγκ̄ . (3.13)

The last term is symmetric in (δβγ) and its contribution to (3.12) vanishes due to index
contraction with the three left-handed chiral fermions. (Fierz rearrangement is one way to
show this.) The ΓΓ structure combines with the ΓF term to produce ΓF̂ . Hence we have

δF̂α =
1√
2
ε̄
[
/∂χα + 1

2
Rβδ̄

α
γχ

δ̄χβχγ + Γαβγ(/∂Z
β − F̂ β)χγ

]
. (3.14)

4This variable has already been introduced in [24] to simplify solutions of the field equations.
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The /∂Zβ remains, and its role is to turn /∂χα into the reparametrization covariant derivative
of χα (as in (2.30))

∇µχ
α = ∂µχ

α + Γαβγχ
β∂µZ

γ . (3.15)

The last term in (3.14) disappears when we use δ̂F̂α = δF̂α + ΓαβγδZ
βF̂ γ to form the mani-

festly covariant transformation

δ̂F̂α =
1√
2
ε̄
[
/∇χα + 1

2
Rβδ̄

α
γχ

δ̄χβχγ
]
. (3.16)

Note that, by replacing both the quantities and transformations with their covariant coun-
terparts, we have gained a covariantization and a curvature term with respect to the con-
ventional formulation.

This is consistent with the covariant superalgebra (2.26), which applied on χα implies[
δ̂1, δ̂2

]
χα = δ̂3χ

α +Rγδ̄
α
βχ

β
[

1
2
ε̄1χ

δ ε̄2χ
γ̄ − (1↔ 2))

]
= δ̂3χ

α − 1
4

[
Rγδ̄

α
βPLε1(χ̄βχγ)ε̄2χ

δ̄ − (1↔ 2))
]
. (3.17)

The first term is a covariant translation:

δ̂3χ
α = ξµ∇µχ

α , (3.18)

where ξµ is determined by the parameters of the supersymmetry transformations 1 and 2:
ξµ = 1

2
ε̄2γ

µε1. The second term appears in the explicit calculation of commutators of covari-
ant transformations due to applying (3.16).

3.2 Supersymmetric action

The same covariant methods apply to the globally supersymmetric action for chiral multi-
plets. Terms of the σ-model kinetic Lagrangian (called the D-term in [23, (14.15)]) combine
into the simpler structure

[K]D = Kαβ̄

[
−∂µZα∂µZ̄ β̄ − 1

2
χ̄α /∇χβ̄ − 1

2
χ̄β̄ /∇χα + F̂α ¯̂

F β̄

]
+

1

4
Rαγ̄βδ̄ χ̄

αχβχ̄γ̄χδ̄ , (3.19)

Similarly, the superpotential term or F -term is given by

[W ]F = WαF̂
α − 1

2
∇αWβχ̄

αχβ + h.c. . (3.20)

Note that these formulae contain only covariant quantities. For instance, the term with
four derivatives of the Kähler potential in the conventional formula has combined into the
Riemann curvature tensor of the Kähler manifold. Similarly, the superpotential becomes
covariant when the F̂α variable is used.

The proof that (3.20) is invariant under the covariant SUSY transformations is to a large
extent identical to the proof with ordinary transformations. Extra terms appear in two
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places, both due to covariantization. First, the last term in the variation of the auxiliary
field, (3.16), leads to a contribution of the transformation of (3.20) of the form

δ̂
(
WαF̂

α
)

=
1

2
√

2
WαRβδ̄

α
γ ε̄χ

δ̄χβχγ + . . . . (3.21)

The second contribution comes from the transformation of the covariant derivative ∇αWβ.
In contrast to the ordinary proof, where ∂αWβ appears, which is holomorphic, this contains
also the antiholomorphic fields and thus, according to (2.9), which is applicable since the
argument depends only on the scalars:

δ̂∇αWβ = δZγ∇γ∇αWβ + δZ̄ γ̄∇γ̄∇αWβ . (3.22)

The first term, as in the usual proof, does not contribute due to a Fierz identity and the
symmetry (αβγ). The second term gives rise to a another curvature term since ∇γ̄Wβ = 0:

δ̂∇αWβ = δZγ∇γ∇αWβ −Rγ̄α
δ
βWδ δZ

γ̄ . (3.23)

This gives thus the contribution to the transformation of (3.20) of the form

δ̂
(
−1

2
Wα;β χ̄

αχβ
)

= . . .+
1

2
√

2
Rγ̄β

δ
αWδ ε̄χ

γ̄ χ̄αχβ + . . . , (3.24)

which cancels with (3.21), completing the proof.

Similarly, the D-term is invariant under the covariant supersymmetry transformations.
Again this calculation mainly entails a covariantized version of the usual proof of invariance;
only at a very few places do explicit curvature terms arise. This includes the variation of
the explicit curvature term that is quartic in fermions, which gives

δ̂(1
4
Rαγ̄βδ̄χ̄

αχβχ̄γ̄χδ̄) =
1

2
√

2
Rαγ̄βδ̄χ̄

α(/∂Zβ + F̂ β)εχ̄γ̄χδ̄ + h.c. (3.25)

The term involving the auxiliary field in this expression is canceled by the SUSY variation
of the explicit auxiliary field in the action. Similarly, the remaining term is opposite in sign
to the variation of the kinetic terms of the fermions, for which it is convenient to use (2.29).

The variation of the curvature term also contains a quintic term in the fermions propor-
tional to

[∇ζRαγ̄βδ̄ +∇αRζγ̄βδ̄](ε̄χ
ζ)(χ̄αχβ) . . . , (3.26)

where we have used the Bianchi identity to symmetrize in ζ ↔ α. However, a Fierz rear-
rangement can be used to show that this expression is equal to (−1/2) of itself and therefore
vanishes, thus completing the proof of supersymmetry.

3.3 On shell transformation of auxiliary fields

The covariant transformation δ̂F̂α in (3.16) is an off-shell relation. It was found by covari-
antizing the standard rule in (3.2), and it is independent of the particular supersymmetric
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action that determines the dynamics of the system. If that action is chosen as the integral
of [K]D + [W ]F for the N = 1 nonlinear σ-model, then F̂α is an auxiliary field. It can be
eliminated by its equation of motion to obtain the on-shell value

F̂α = −Kαβ̄∂β̄W ≡ −W
α
. (3.27)

This is a function of the coordinate scalars, so its SUSY variation is

δon-shellF̂
α = − 1√

2
∇β̄W

α
ε̄χβ̄ . (3.28)

Consistency requires that the off-shell version reduce to this when the equations of motion
of other fields of the system are satisfied. Indeed we can rewrite (3.16) as follows:

δ̂F̂α =
1√
2
ε̄
[
γµ∇̂µχ

α + 1
2
Rβδ̄

α
γχ

δ̄χβχγ +∇β̄W
α
χβ̄
]
− 1√

2
∇β̄W

α
ε̄χβ̄ . (3.29)

The term in brackets [. . . ] vanishes by the fermion equation of motion, so the consistency
test is satisfied.

4 Conclusion

The symmetry transformations of any theory in which the scalar fields are coordinates of
a geometric target space can be expressed in terms of quantities that are covariant under
target space reparametrizations. We have discussed the general rules to construct covariant
transformations and derivatives for scalars and other fields, and shown that their commu-
tators involve novel curvature terms. It should be emphasized that much of this covariant
structure is independent of any dynamical model. As a particular application, we applied
this method to the chiral multiplets in N = 1, D = 4 supersymmetry and highlighted how
all fields, transformation laws and the action can be written in covariant form under Kähler
reparametrizations.

These intrinsically elegant techniques have wide applications. In the second paper of this
series ( [21], in preparation) we will apply them to the dynamics of chiral multiplets in a
general N = 1 supergravity theory. In that example covariant methods are applied first at
the superconformal level and it is shown how they simplify the passage to the embedded
projective Kähler manifold of an off-shell version of the physical supergravity theory that is
invariant under Poincaré supersymmetry.
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