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Circumference of  the Earth 

Ptolemy (~150AD) : ~ 30 000 km 
Erastothenes (~250BC) : ~ 40 000 km



Cosmography today

ds2 = gμνdxμdxν = − dt2 + a2(t) dΣ2

Rμν +
1
2

Rgμν + λgμν = 8πG Tμν

 is chosen to be spatially symmetric 
thereby fulfilling homogeneity and isotropy 
gμν

 is an ideal fluid that in the homogeneous 
limit reduces to 
Tμν

diag(−ρ, p, p, p)
Obligatory cosmology slide

Observations constrain the energy content in our universe using , .1 = Ωγ + Ωm + ΩΛ + Ωk Ωi = ρi /ρcr



The Cosmological principle
Definitions from Thoughts on the Cosmological Principle - Schwarz [0905.0384]

“The distribution of  
light and matter in the 
Universe is statistically 
isotropic around any 

point, apart from 
anisotropies of  local 

origin.”

Fluctuations with : 
Statistically isotropic and Gaussian to 
high degree 

 fluctuations, mostly 
primordial

ℓ > 1

𝒪(10−5)
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Boruah, H
udson, Lavaux [1912.09383]
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The CMB rest frame

Fluctuations with : 
Statistically isotropic and Gaussian to 
high degree 

 fluctuations, mostly 
primordial

ℓ > 1

𝒪(10−5)

Dipole anisotropy : 
 fluctuation, mostly not primordial 

Instead attributed to Doppler boosted monopole with  

 

ℓ = 1
𝒪(10−3)

β ∼ 10−3

v⊙ = 369.82 ± 0.11 km/s

(l, b) = (264.021 ± 0.011, 48.253 ± 0.005)∘

Planck Collab. 2018, I [1807.06205]

-3mK +3mK0

Defined as the frame in which the CMB dipole is zero



The CMB rest frame

Fluctuations with : 
Statistically isotropic and Gaussian to 
high degree 

 fluctuations, mostly 
primordial

ℓ > 1

𝒪(10−5)

-3mK +3mK0

Defined as the frame in which the CMB dipole is zero

Planck C
ollab. 2018, I [1807.06205]



CMB

The CMB rest frame
Local Group

Observer with  
velocity v



Other tests of  the Cosmological Principle

M
agoulas et al. (2014) Proc.IAU

 11 S308

Scrim
geour et al. (2012) M

N
R

A
S 425

D2(r) =
ln N(< r)

ln r
⟨v(r)2⟩ ∝ ∫ dk P(k)W̃(kr)



Ellis and Baldwin (1984)

• Isotropic sample of  objects on the sky 

• Spectra are power laws in flux density  

• Differential number counts of  flux-limited catalog follows   

fν ∝ ν−α

dN/dΩ ( fν > f min
ν ) ∝ ( f min

ν )−x

➡   Dipole in the number density with amplitude [2 + x(1 + α)] ⋅ β

fobs(νobs) = frest ( 1 + β cos θ

1 − β2 )
1+α

fν

ν

∝ ν−α

f min
ν

Doppler boosting spectra
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Radio dipole(s)

•  For radio sources we expect  

• Radio catalogs of   sources from ground-based surveys (NVSS, SUMSS, TGSS, WENSS, …) lead to dipoles 
around  
 
 
 
 
 
 
 
 
 
 
 

• Most (so far) have in common: ~low statistics, atmospheric systematics, biased estimators, local contamination, …

d = [2 + x(1 + α)] ⋅ β = 0.0046

𝒪(105)
d = 0.01 − 0.03

e.g. Blake and Wall [astro-ph/0203385], Singal [1110.6260], Gibelyou and Huterer [1205.6476], Rubart and Schwarz [1301.5559], Tiwari et al. [1307.1947], … 
or see summary by Siewert, Schmidt-Rubart and Schwarz [2010.08366]

Fig.4, Siewert, Schmidt-Rubart  
and Schwarz [2010.08366]



Dipole contributions

•  

• Kinematic dipole is expected to dominate over local clustering dipole at higher redshifts  

• Local clustering dipole (z<0.1) studied using similar techniques  

• Bias contribution depends on dipole estimator, and on dipole already in the sample 

• Dipole from shot noise decreases with size of  ( ) galaxy sample 
 

• If  these are modelled correctly, one can produce a set of  galaxy number density simulations!

⃗d total = ⃗d kin + ⃗d local + ⃗d bias + ⃗d noise

≳ 𝒪(106)

e.g. Gibelyou and Huterer [1205.6476], Yoon et al. [1406.1187], Alonso et al. [1412.5151], Bengaly et al. [1606.06751], Rameez et al. [1712.03444], …

e.g. Bengaly et al. [1810.04960]

e.g. amplitude bias of  the linear estimator Rubart and Schwarz [1301.5559], directional bias of  the linear estimator Siewert, Schmidt-Rubart and Schwarz [2010.08366]



• “Linear estimator” 

• “Quadratic estimator” 

• Spherical harmonics 

• Template fitting

Dipole estimators
⃗Dl =

3
N

N

∑
i

̂ri

χ2 = ∑
p

[np − n̄ (1 + ⃗Dq ⋅ ̂rp)]
2

n̄ (1 + ⃗Dq ⋅ ̂rp)
→ Min .

e.g. Crawford [0810.4520], Singal [1110.6260], Rubart and Schwarz 
[1301.5559], Siewert, Schmidt-Rubart and Schwarz [2010.08366], …

Very fast

Biased, even worse when sky is masked

Unbiased on full sky and under certain conditions

Comparably slow (num. minimisation)

Somewhat natural choice

Coupling between multipoles on incomplete sky

e.g. Bengaly et al. [1810.04960]

e.g. Blake and Wall [astro-ph/0203385]

e.g. Blake and Wall [astro-ph/0203385] (in slightly different form),  
Hirata [0907.0703], Secrest et al. [2009.14826], …

∑
p [np −

m

∑
i

aiti( ̂rp)]
2

→ Min . Very fast, unbiased on full sky and under certain cond. 

(Possible coupling between templates)

C
om

puted on density m
aps

C
om

puted  
w

ith catalog



Mid-IR Quasar sample
Based on 
ApJ Lett. (2021) 908:L51 | [2009.14826] 
with N. Secrest, M. Rameez,  
R. Mohayaee, S. Sarkar, and J. Colin
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• CatWISE2020 includes data from all WISE phases  
(i.e. 4+3-band- and post-cryo, NEOWISE, NEOWISE-R) 
and employs an updated source detection algorithm 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• Current infrared-selected AGN catalogs typically have  sources collected by WISE 𝒪(106 − 107)

• CatWISE2020 includes data from all WISE phases  
(i.e. 4+3-band- and post-cryo, NEOWISE, NEOWISE-R) 
and employs an updated source detection algorithm 

• Sample selection: 

• Correct for Galactic dust extinction 

• Color cut (W1-W2>0.8) 

• Flux cut (corresponding to 9<W1<16.4) 

• Remove 2MASS LGA, and other bright objects 

• Galactic plane mask (|b|>30 deg)

e.g. Secrest et al. [1509.07289], Assef  et al. [1706.09901]

Eisenhardt et al. [1908.08902] / Marocco et al. [2012.13084]
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Mid-IR Quasar sample

• Flux density , with  

• Differential number counts ,  
with  

• Cross-matched sources with SDSS (e-BOSS) give 
redshifts 
with 

fν ∝ ν−α median(α) = 1.16

dN/dΩ ( fν > f min
ν ) ∝ ( f min

ν )−x

x = 1.7

mean(z) = 1.2
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• Estimate clustering (local) dipole from linear theory 
 
 

• We find  compared with the 
measured dipole 

dlocal = 0.00024 b2

d = 0.01554

⃗d total = ⃗d kin + ⃗d local + ⃗d bias + ⃗d noise
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Mid-IR Quasar sample dipole — simulations

• 10 million simulations run with input velocity 
of   in direction 

 

• Sources resample  and  from sample’s 
distributions 

• Number of  sources cut to that in sample 

• The dipole we find in the CatWISE2020 
AGN sample is inconsistent with this at 

v⊙ = 369.82 km/s
(l, b) = (264.021, 48.253)∘

α fν

p = 5 × 10−7
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What could have gone wrong?

• Small-scale clustering enhanced through double counting (radio lobes) 

• Point sources 

• Not kinematic, but large-scale clustering at redshifts z~1 

• Scanning strategy / Striping 

• Temperature shifts of  the instrument? Time-dependent sensitivity? 

• Leakage of  higher multipoles due to cut sky 

• Populations of  unremoved local (Galactic) sources 

• All ideas welcome!



Mid-IR Quasar sample dipole — dipole direction
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• Radio dipoles  

• SNIa bulk velocity  

• X-ray cluster  relation 

• SNIa “cosmic” acceleration 

• kinetic Sunyaev-Zeldovich effect (“dark flow”) 

• CMB anomalies

LX − T

e.g., Siewert, Schmidt-Rubart and Schwarz [2010.08366]

e.g., Colin et al. [1011.6292 ]

Migkas et al. [2004.03305]

Colin et al. [1808.04597]

Kashlinsky et al. [0910.4958], see also [1303.5090] and [1411.4180]

Schwarz et al. [1510.07929]

M
ohayaee et al. [2106.03119]



SNIa acceleration — including a dipole
Colin et al. [1808.04597]

• Due to peculiar velocities of  SNIa, redshifts are 
conventionally corrected to be in CMB rest frame 

• Corrections can only be made with a model, that is 
ignorant beyond ~150 Mpc 

• Undoing corrections and instead including a dipole into 
the fit of  the deceleration parameter results in  
“detection” of  cosmic acceleration.

∼ 1.4σ

C = [(1 + zhel − (1 + zCMB)(1 + zd)] c

q = qm + ⃗q d ⋅ ̂n F(z, S)



CMB aberration and modulation
Saha et al. [2106.07666], Planck Collab. XXVII [1303.5087]

• A boosted observer also sees the CMB fluctuations 
aberrated and modulation by a degree proportional to 
the velocity 

• Saha et al. (2021) find the inferred velocity to be 
consistent with that inferred from the CMB dipole



What now?

• Dipole could originate from kinematic effects, but could also arise from larger-scale clustering than 
expected 

• Disentangle kinematic from non-kinematic effects, and CMB dipole from matter dipole 

• Spectrum of  CMB dipole/quadrupole, aberration in the CMB, other estimators, … 

• Test other effects, e.g. kinematic Sunyaev-Zeldovich-effect (“dark flow”), X-ray dipole, … 

• Investigate theoretical aspects, e.g. Grishchuk-Zeldovich effect (“tilted universe”) 

• Larger samples expected from various upcoming surveys (Square Kilometre Array, Vera Rubin Obs., 
Nancy Grace Roman Space Tel., …)

see also Gunn (1988), and Turner (1991)

Migkas et al. [2004.03305]Planck Collab. Int. Res. XIII [1303.5090], Atrio-Barandela et al. [1411.4180]

e.g., Planck Collab. XXVII [1303.5087]e.g., Kamionkowski&Knox [0210165]



Summary

• Most cosmological probes rely on the validity of  the Cosmological Principle, and more 
 
 
This work: 

• High-  quasar sample of   sources (largest so far, for such studies) 

• Dipole amplitude is inconsistent with having kinematic origin and  
with a significance of  

z 1.36 × 106

v⊙ = 369 km/s
p ≈ 5 × 10−7

“Rhinocerus” — Albrecht Dürer (Nuremberg, 1515)


