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Introduction

Supersymmetry and Supergravity

Supersymmetry transforms bosons into fermions and viceversa:

Q |F >= |B >, Q |B >= |F >,

Every boson must have a fermionic partner.

Supersymmetry is not seen in nature: the standard model
particles can not be fitted in “supermultiplets”.

Supersymmetry might explain the hierarchy problem provided
supersymmetry is unbroken around the TeV scale.

MH ∼ 126 GeV,

∆M2
H ∼ Λ2

GUT
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N = 1 Supergravity
Motivation

Supergravity is the local version of supersymmetry.

{Qα,Qβ} = 1
2 (γµC−1)αβP

µ.

Supergravity includes General Relativity

In general SUSY theories have a better UV behaviour than
non-SUSY theories

Originally supergravity was proposed as a solution to cure the
divergences of quantum gravity.

Today it is mainly regarded as the low energy effective
description of a more fundamental theory: String Theory.

4 / 38



SUSY
Decoupling

Kepa Sousa
Jacobs University

Supergravity

Field theory
and GR

Local SUSY Part I

Pure Supergravity Action

5 / 38



SUSY
Decoupling

Kepa Sousa
Jacobs University

Supergravity

Field theory
and GR

Local SUSY

Field theory in curved space-times

The geometry of space-time is dynamical

The space-time geometry is charaterized by the metric gµν .

ds2 = gµνdxµdxν

The dynamics of gµν are determined by the Einstein’s equations

e−1LEH = − 1
2R, Rµν = −8πG (Tµν − 1

2gµνT )

Coupling other fields to gravity

e−1L = − 1
2R − gµν∂µφ∂ν φ̄− 1

2FµνF
µν − V (φ, φ̄).
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Gauging a global symmetry

The U(1) symmetry of a complex scalar field can be made local

The U(1) symmetry acts as a phase shift on the field φ:

L = −∂µφ∂µφ̄, φ −→ φ+ iλ(x)φ

To preserve invariance under local transformations we introduce
the covariant derivatives

Dµφ ≡ ∂µφ− iAµφ, Aµ −→ Aµ + ∂µλ

the resulting lagrangian is

L = −gµνDµφDν φ̄− 1
2FµνF

µν

The Maxwell term is added to capture the dynamics of the
gauge boson Aµ.
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Gravity as a gauge theory

Gravity can be treated as a gauge theory

Diffeomorphisms play the röle of gauge transformations.
At linear order around Minkowski:

L = −ηmn∂mφ∂nφ̄, φ −→ φ+ λµ(x)∂µφ

The corresponding covariant derivative can be defined as

Daφ ≡ ∂mφ− Aµm(∂µφ), Aµm −→ Aµm + ∂mλ
µ

We introduce a gauge field Aµa for each gauge parameter λµ.

Ordinary derivatives are substituted by covariant derivatives

e−1L = −ηmnDmφDnφ̄
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Gravity as a gauge theory

Gravity can be treated as a gauge theory

We can combine the derivative and the gauge terms into one:

Dm ≡ ∂m − Aµm(∂µ) = (δµm − Aµm)∂µ ≡ eµm∂µ,

we recover the standard lagrangian for φ in curved space-time

ηmnDmφDnφ̄ = gµν∂µφ∂ν φ̄, gµν = ηmneµmeνn

The Einstein-Hilbert term is introduced instead of the Maxwell
term to capture the dynamics of eµm:

e−1L = − 1
2R − gµν∂µφ∂ν φ̄

This is just the first step: reduce d.o.f. of eµm and include spinors.
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Local supersymmetry

Local supersymmetry

In supersymmetry the gauge parameter ε has spin 1
2

φ −→ φ+ δεφ, δεφ = εχ

The corresponding gauge field must transform as

ψµ −→ ψµ + ∂µε(x) + . . .

The theory must contain a spin− 3
2 field ψµ, the gravitino.

Local supersymmetry implies invariance under local translations

Supergravity includes General Relativity

(δεδη − δηδε)φ ∼ ∂µφ

The theory must contain a spin−2 field eµm, the vielbein.
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Local supersymmetry
Pure supergravity action

vielbein em
µ

Gravity multiplet µ,m = 0, · · · , 3
( 3

2 , 2) gravitino ψµ

The simplest supergravity theory contains LEH and the kinetic
term for the gravitino (Rarita-Schwinger term):

e−1L = − 1
2R − 1

2 ψ̄µγ
µρσDρψσ +O(ψ4)

Extra terms have to be added so that the lagrangian is invariant
under the supersymmetry transformations

δεe
a
µ = − 1

2 ε̄γ
aψµ,

δεψµ = Dµε.

In general invariance under supersymmetry transformations
constraints the type of interactions between fields.
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Extended supergravity

We have discussed minimal supergravity.

A theory invariant under N > 1 supersymmetries is called
extended supergravity.

The corresponding supergravity theory would have N gravitini.

Extended supergravity theories are very constrained.

Many string compactifications are described with extended
supergravity theories.

N = 1 supergravity is closer to phenomenology.
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Constructing N = 1 Supergravity Models.
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manifold.

Gauge
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Scalar
potential

Overview

Bosonic sector of the action

scalars φI

Chiral multiplets I = 1, . . . , nC

(0, 1
2 ) chiralini χI

gauge fields Aa
µ

Vector multiplet a = 1, . . . , nV

( 1
2 , 1) gaugini λa

For simplicity we will focus on the bosonic part of the action:

χI = 0, λa = 0, ψµ = 0.

The supergravity lagrangian must include the Einstein-Hilbert term

e−1LB = − 1
2R + . . .
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Scalar
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Overview

Bosonic sector of the action
Coupling scalar fields

We can couple several complex scalar fields φI in the usual way

e−1L = − 1
2R − ∂µφ1∂µφ̄1 − ∂µφ2∂µφ̄2 . . .

Supersymmetric theories admit more general kinetic terms.

In general, the kinetic terms are characterized by a non-linear
sigma model.

Non-linear sigma models have a simple geometrical interpretation:

The scalar fields φI can be seen as coordinates of a manifold M.

The function GI J̄(φ, φ̄) is the metric on that manifold.

15 / 38



SUSY
Decoupling

Kepa Sousa
Jacobs University

SUGRA models

Scalar
manifold.

Gauge
couplings

Scalar
potential

Overview

Bosonic sector of the action
Coupling scalar fields

We can couple several complex scalar fields φI in the usual way

e−1L = − 1
2R − δI J̄ ∂µφI∂µφJ̄ . . .

Supersymmetric theories admit more general kinetic terms.

In general, the kinetic terms are characterized by a non-linear
sigma model.

Non-linear sigma models have a simple geometrical interpretation:

The scalar fields φI can be seen as coordinates of a manifold M.

The function GI J̄(φ, φ̄) is the metric on that manifold.

15 / 38



SUSY
Decoupling

Kepa Sousa
Jacobs University

SUGRA models

Scalar
manifold.

Gauge
couplings

Scalar
potential

Overview

Bosonic sector of the action
Coupling scalar fields

We can couple several complex scalar fields φI in the usual way

e−1L = − 1
2R − GI J̄(φ, φ̄) ∂µφ

I∂µφJ̄ . . .

Supersymmetric theories admit more general kinetic terms.

In general, the kinetic terms are characterized by a non-linear
sigma model.

Non-linear sigma models have a simple geometrical interpretation:

The scalar fields φI can be seen as coordinates of a manifold M.

The function GI J̄(φ, φ̄) is the metric on that manifold.

15 / 38



SUSY
Decoupling

Kepa Sousa
Jacobs University

SUGRA models

Scalar
manifold.

Gauge
couplings

Scalar
potential

Overview

Bosonic sector of the action
Coupling scalar fields

We can couple several complex scalar fields φI in the usual way

e−1L = − 1
2R − GI J̄(φ, φ̄) ∂µφ

I∂µφJ̄ . . .

Supersymmetric theories admit more general kinetic terms.

In general, the kinetic terms are characterized by a non-linear
sigma model.

Non-linear sigma models have a simple geometrical interpretation:

The scalar fields φI can be seen as coordinates of a manifold M.

The function GI J̄(φ, φ̄) is the metric on that manifold.

15 / 38



SUSY
Decoupling

Kepa Sousa
Jacobs University

SUGRA models

Scalar
manifold.

Gauge
couplings

Scalar
potential

Overview

Bosonic sector of the action
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STEP 1: Choose the shape of the scalar manifold M

e−1L = − 1
2R − GI J̄(φ, φ̄) ∂µφ

I∂µφJ̄ . . .

Requiring that

GI J̄(φ, φ̄) = ∂I∂J̄K (φ, φ̄),

∂I ≡ ∂

∂φI
.

Supersymmetry requires M to be Kahler-Hodge.

The metric can be written in terms of the Kähler potential
K (φ, φ̄).
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Coupling scalar fields

Example 1: The complex plane, K (φ, φ̄) = φφ̄:

It represents the canonical kinetic terms:

e−1LB = − 1
2
R − ∂µφ∂

µφ̄

Gφφ̄ = ∂φ∂φ̄K = 1, ds2 = dφd φ̄ = dx2 + dy2
(φ=x+iy)

Example 2: The sphere, K (z , z̄) = − log(1 + φφ̄):

e−1LB = − 1
2R − ∂µφ∂

µφ̄

(1 + φφ̄)2

Gφφ̄ = ∂φ∂φ̄K =
1

(1 + φφ̄)2
, ds2 =

dφd φ̄

(1 + φφ̄)2
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STEP 2: Choose which symmetries are promoted to local

The isometries of the scalar manifold are global symmetries of
the lagrangian:

e−1L = − 1
2R−GI J̄(φ, φ̄) ∂µφ

I∂µφJ̄ . . . , φI −→ φI +αak I
a(φ)

k I
a(φ) are the holomorphic killing vectors.

To make these symmetries local we define the covariant
derivatives. In the abelian case:

Dµφ
I = ∂µφ

I − k I
a Aa

µ, Aa
µ −→ Aa

µ + ∂µα
a

The choice of killing vectors determines the gauge group G
If the killing vectors do not commute the gauge group must be
non-abelian:

[ka, kb] = f c
abkc .
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Example: The sphere:

e−1LB = − 1
2R − DµφDµφ̄

(1 + φφ̄)2

The symmetries of the sphere are rotations around the three axes:

φ −→ φ+ iα1φ

φ −→ φ+ 1
2α2 (1 + φ2)

φ −→ φ+ 1
2α3 (1− φ2)

If we make only α2 local the gauge group is U(1) and:

k2(φ) = 1
2 (1 + φ2), Dµφ = ∂µφ− 1

2 (1 + φ2)Aµ

If we make local α1, α2, and α3 then G = SU(2).
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Kinetic terms of the gauge sector

STEP 3: Add the kinetic terms for the gauge bosons:

e−1LB = − 1
2R − GI J̄ Dµφ

IDµφJ̄ − 1

4
F a
µνF

aµν

The field strenghts of the gauge bosons are given by

F a
µν = ∂µA

a
ν − ∂νAa

µ − f a
bcA

b
µA

b
µ.
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Kinetic terms of the gauge sector

STEP 3: Add the kinetic terms for the gauge bosons:

e−1LB = − 1
2R − GI J̄ Dµφ

IDµφJ̄ − 1

4
(Re fab)F a

µνF
bµν

+
1

4
√
−g

(Im fab)F a
µνε

µνρσF b
ρσ+ . . . ,

The field strenghts of the gauge bosons are given by

F a
µν = ∂µA

a
ν − ∂νAa

µ − f a
bcA

b
µA

b
µ.

The kinetic terms of the gauge bosons are characterized by
the holomorphic gauge kinetic functions: fab(φ).

In simple models Re fab reduces to the Cartan metric of the
gauge group.
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STEP 4: Choose a scalar potential:

e−1LB = − 1
2R − GI J̄ Dµφ

IDµφJ̄ − 1

4
(Re fab)F a

µνF
bµν

+
1

4
√
−g

(Im fab)F a
µνε

µνρσF b
ρσ − V (φ, φ̄).

In the absence of gauge couplings the scalar potential is
determined by the Kähler potential K (φ, φ̄) and a holomorphic
function, the superpotential W (φ):

V = eK
(
G I J̄DIWDJ̄W̄ − 3|W |2

)
, DIW ≡ ∂IW − ∂IK W .

Gauge couplings require an extra contribution determined by the
killing vectors and the gauge kinetic functions.
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Final form of the lagrangian

Bosonic sector of the lagrangian reads:

e−1LB = − 1
2R − GI J̄ Dµφ

IDµφJ̄ − 1

4
(Re fab)F a

µνF
bµν

+
1

4
√
−g

(Im fab)F a
µνε

µνρσF b
ρσ − V (φ, φ̄).

Summarizing, the action is determined by the following four items:

1 The geometry of the scalar manifold, encoded in K (φ, φ̄).

2 the choice of local symmetries, k I
a(φ) (which fixes G).

3 the kinetic terms of the gauge bosons, defined by fab(φ),

4 and the scalar potential, determined by the superpotential W (φ).
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Truncations in field theory cosmological models

Cosmological models based on supersymmetric GUT’s and
Superstrings typically involve a large number of scalar fields.

In order to gain control and be able to make predictions it is
useful to find ways to simplify the models, leaving only a few
scalar fields.

The truncated sector usually consists on those fields stabilized
with a large mass.
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Introduction

Example: INFLATION

Inflation can be due to the potential energy of a scalar field
rolling down a very flat potential:

H =
1

2
φ̇2 +

1

2
(∇φ)2 + V (φ) ≈ V (φ0).

Too many scalar fields make difficult to check the slow roll
conditions.

Single field inflationary models fit well the data, while multifield
inflationary models are very constrained.

Which conditions ensure that inflation can be regarded as
“single field” in a multifield framework?.
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It is convenient to leave supersymmetry unbroken during the
integration of heavy fields

simplicity: we can calculate the effective theory more efficiently.

phenomenology: it might provide a solution to the hierarchy
problem.

Example: Flux compactifications

Cosmological models based in superstrings involve hundreds of
scalar fields, such as the moduli.
In flux compatifications a fraction of the moduli is stabilized in a
supersymmetric way leaving behind an effective supergravity
theory. Giddings 02

Which conditions allow the supersymmetric integration of a
heavy sector?.
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Supersymmetric Truncations in Supergravity

We would like to understand which type of couplings allow for
the supersymmetric decoupling of a heavy sector in N = 1
supergravity.

We study the conditions needed to truncate a heavy sector in a
N = 1 supergravity model subject to two requirements:

1 The truncated fields, Hα, should not be sourced by the
interactions with the surviving sector, Li :

δS |H0

δLi
= 0 =⇒ δS

δLi
|H0 = 0,

2 The reduced theory for the low energy fields must be described
by N = 1 supergravity.

These conditions translate into constraints for the couplings
between the truncated (heavy) and the surviving (light) sectors.
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Supersymmetric Truncations in Supergravity

The truncation is defined by the following two conditions:

The scalar fields in the heavy sector are fixed at a extremum of
the scalar potential with a expectation value

Hα = Hα
0 , S(H, H̄, L, L̄) −→ S light(L, L̄).

In particular this condition defines a submanifold of the Kähler
manifold.

The expectation value of the truncated fields might break some
gauge symmetries, when

δHα = kαã (H0, L) 6= 0.

The gauge bosons associated to broken gauge symmetries must
be truncated:

F ã
µν = 0.
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Supersymmetric Truncations in Supergravity
Supersymmetry transformations

In order to find the conditions which allow the supersymmetric
decoupling of the heavy sectors, we study the supersymmetry
transformations.

Supersymmetry transformations of the chiralini and the gaugini

δχI
L = 1

2γ
µ∇µφI εR − 1

2 e
1
2 KK I J̄DJ̄W̄ εL

δλa = 1
4γ

µνF a
µνε+ 1

2 i(Re f )−1|abPb γ5ε.

The supersymmetry tranformations depend on the couplings
between fields: K (φ, φ̄), G, fab(φ), k I

a(φ) and W (φ).
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Supersymmetric Truncations in Supergravity
Supersymmetry transformations

The supersymmetry transformations split into two sets

Supersymmetry transformations of the HEAVY fields: χα, λã

δχαL = 1
2γ

µ∇µHαεR − 1
2 e

1
2 KKαβ̄Dβ̄W̄ εL − 1

2 e
1
2 KKαīDīW̄ εL

δλã = 1
4γ

µνF ã
µνε+ 1

2 i(Re f )−1|ãb̃Pb̃ γ5ε+ 1
2 i(Re f )−1|ãbPb γ5ε.

Supersymmetry transformations of the LIGHT fields: χi , λa

δχi
L = 1

2γ
µ∇µLiεR − 1

2 e
1
2 KK i j̄Dj̄W̄ εL− 1

2 e
1
2 KK i β̄Dβ̄W̄ εL

δλa = 1
4γ

µνF a
µνε+ 1

2 i(Re f )−1|abPb γ5ε+
1
2 i(Re f )−1|ab̃Pb̃ γ5ε.
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2 i(Re f )−1|ãb̃Pb̃ γ5ε+ 1
2 i(Re f )−1|ãbPb γ5ε.
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δχi
L = 1

2γ
µ∇µLiεR − 1

2 e
1
2 KK i j̄Dj̄W̄ εL− 1

2 e
1
2 KK i β̄Dβ̄W̄ εL

δλa = 1
4γ

µνF a
µνε+ 1

2 i(Re f )−1|abPb γ5ε+
1
2 i(Re f )−1|ab̃Pb̃ γ5ε.
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Supersymmetric Truncations in Supergravity
Supersymmetry transformations

The truncated sector must preserve supersymmetry.

The supersymmetry transformations of the light sector should
reduce to the form required by SUGRA if there was no heavy
sector.

It is sufficient to solve the following constraints

1
2γ

µ∇µχαεR − 1
2 e

1
2 KKαβ̄Dβ̄W̄ εL − 1

2 e
1
2 KKαīDīW̄ εL = 0,

1
4γ

µνF ã
µνε+ 1

2 i(Re f )−1|ãb̃Pb̃ γ5ε+ 1
2 i(Re f )−1|ãbPb γ5ε = 0,

for any arbitrary configuration of the fields Li of the reduced theory.

If the conditions we find are not preserved by supersymmetry we
impose new constraints until we reach self-consistency.
Andranopoli 01
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Summary of the results

FIELD CONTENT

Each scalar field Hα
0 must be truncated with its whole

supermultiplet:
Hα = Hα

0 , χα = 0.

Gauge fields associated to broken symmetries kαã (H0, L) 6= 0
must be truncated with their supermultiplets:

F ã
µν = 0, λã = 0.
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Summary of the results

The KINETIC TERMS of the truncated and surviving fields must
be decoupled:

The scalar manifold of the reduced theory is a totally geodesic
Kähler submanifold of the parent manifold,

thus, the sigma model metric is block diagonal at Hα = Hα
0 :

G |(H0,L) =

(
G h 0
0 G l

)
for all Li .

The real part of the gauge kinetic functions should be block
diagonal in the truncated and suriving gauge fields:

Re f |(H0,L) =

(
Re f h 0

0 Re f l

)
, and Re (∂αf l)|(H0,L) = 0.
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Summary of the results

The GAUGE INTERACTIONS should respect the truncation

Non-abelian interactions should not source the truncated gauge
bosons. If the gauge group G is semi-simple, and Gh is the
broken subgroup

G = Gh ×Gl otherwise Gl C G.

Truncated gauge bosons should not be sourced by the surviving
fields in the chiral multiplets:

k i
ã(H0, L) = 0, kαã,i (H0, L) = 0 for all Li .

Truncated fields in the chiral multiplets should not be sourced by
the surviving gauge bosons:

kαa (H0, L) = 0, k i
a,α(H0, L) = 0 for all Li .
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Summary of the results

SCALAR POTENTIAL

In addition, the superpotential must satisfy the constraint
DαW |H0 = 0, which is solved locally by

W = W0(φ)e−γαhα

,

where W0(φ) is an arbitrary holomorphic function, the equations
hα(φ) = 0 define the reduced scalar manifold, and γα is
determined by W0 and hα.

This ensures that the Hessian of the scalar potential V is block
diagonal in the truncated and surviving sectors at Hα = Hα

0

V |(H0,L) =

(
V h 0
0 V l

)
for all Li .
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Discussion

We opresented the conditions required for truncating a heavy
sector in N = 1 SUGRA subject to two requirements:

1 the heavy fields are not sourced by the low energy fields.
2 supersymmetry is exactly preserved.

These conditions are expressed as constraints on

K (φ, φ̄), k I
a(φ), G, fab(φ) and W (φ).

In particular, this result shows how to couple a working
inflationary model to a heavy sector without spoiling the
slow-roll conditions.

Consistency also requires the heavy field configuration to be
perturbatively stable. arXiv: 0712.3460, 0809.1441
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